
Quantum Field Theory II (8.324) Fall 2010

Assignment 2


Readings 

•	 Prof. Zwiebach’s notes on Lie algebras 

•	 Peskin & Schroeder chapters 15 and 16 

•	 Weinberg vol 2 chapter 15. 

•	 After finishing non-Abelian gauge theories we will go back to Peskin & Schroeder 
chapter 6 and Weinberg Vol I chapter 11. 

Note: 

•	 In my lectures I will not discuss Batalin-Vilkovisky formalism. It is a beautiful 
formalism with many applications. It is particularly powerful in dealing with 
theories with complicated gauge symmetries for which ghosts for ghosts are 
needed. For example, this formalism played a crucial role in Prof. Zwiebach’s 
seminal work on constructing a complete covariant closed string field theory. 
Those of you who would like to get a brief introduction about this formalism 
can read Weinberg’s Vol 2 Sec.15.8–15.9. 

Problem Set 2 

1.	 Group theory (14 points) 

(a) Peskin & Schroeder prob. 15.1 (c) and (d) only 

(b) Peskin & Schroeder prob. 15.2 
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2. Transformation of the covariant current (12 points) 

Consider the usual Lagrangian 

L = − 
1 

4 
F a 
µνF

µνa 
− iΨ̄(γµDµ −m)Ψ (1) 

Here the unitary matrix group G has Lie algebra generators satisfying 

[Ta, Tb] = ifabcTc (2) 

with fabc totally antisymmetric. The matter field Ψ transforms in some Lie-
algebra representation defined by matrices Ta

r . As we derived in lecture the 
equation of motion for the gauge field can be written as 

DµF
µν = Jν (3) 

with (in the expression below a-index is summed over) 

F µν = F µνaTa
r , Jν = g(Ψ̄γνTa

rΨ)Ta
r (4) 

(a) Using the equations of motion prove that Jµ is covariantly conserved. 

(b) Derive the transformation property of Jν under a gauge transformation. 
and use this to show that equation (3) is consistent under a gauge trans­
formation (i.e. both sides transform the same). Note that for this problem 
you cannot use the transformation property of the LHS of (3) to deduce 
that for Jµ as you are asked to checked the consistency of the equation. 

3. θ term (12 points) 

One can in principle add the following term to a Yang-Mills Lagrangian 

θ 
Lθ = ǫµνλρF a F a (5) 

64π2 µν λρ 

(a) Discuss how this term transforms under C, P, T transformations. 

(b) Express it explicitly as a total derivative. 

Note: You will learn later (probably next term) that θ is in fact an angle with 
period 2π, i.e. with the particular normalization in (5), the theory is equivalent 
for θ + 2πn for any integer n. 

4. Flat connections are locally trivial (24 points) 

Consider a non-Abelian gauge theory based on a unitary matrix group and as­
sume we have a configuration for the gauge field Aµ such that the corresponding 
field strength Fµν vanishes. Such gauge field, or connection, is said to be a flat 
connection. We want to show that such a flat connection is gauge equivalent 
to zero locally; i.e., we can find a well-defined gauge parameter such that after 
a gauge transformation the gauge field can be made to vanish on a connected 
region of spacetime. Show this in the following way: 
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(a) Write a differential equation for the group element U(x) that defines the 
gauge transformation that gauges away Aµ. Verify that the local integra­
bility condition [∂µ, ∂ν ]U(x) = 0 is satisfied for the present problem. 

(b) Choose an origin x0 and take U(x0) = 1. Consider a path x(s) starting 
from x0 = x(s = 0). Write an ansatz for U(x(s)). To verify that U 
solves the differential equation requires consideration of more than one 
path. Explain why. Conclude that your ansatz solves the problem if the 
value of U at any point is independent of the path chosen. 

(c) Show that U(x), constructed by using paths, is in fact path independent 
(this is somewhat challenging!). Hints: Consider two nearby paths xµ(s) 
and x̃µ(s) = xµ(s) + δxµ(s), both of which start at x0 and end at x1. 
Let U(x(s)) and Ũ(x̃(s)) denote the solutions along the paths and δU = 
Ũ(s) − U(s). Study the differential equation satisfied by U−1δU . (This 
part derives a special case of the so-called non-Abelian Stokes theorem. 
Prof. Goldstone was one of the early people who derived it.) 

5. Non-abelian gauge fields are not fully specified by Fµν (20 points) 

We learned that a connection Aµ whose field strength Fµν vanishes is locally 
gauge equivalent to the zero connection. We now want to ask another ques­
tion. Suppose two different connections have the same field strength, are the 
two connections gauge equivalent locally? In other words, is there a gauge 
transformation that maps one connection into the other (locally)? 

(a) Consider the question in the Abelian theory and conclude that in this case 
the gauge fields are gauge equivalent locally. 

For the non-abelian theory connections with the same field strength need 
not be gauge equivalent locally. Therefore, it is sufficient to show an exam­
ple where this is the case. Here is an example from Prof. Jackiw. Consider 
an SU(2) gauge theory and two connections. The first one lives in the third 
direction of the Lie algebra, and the only nonvanishing components are 

1 σ3 1 σ3 

Ax = − gy , Ay = gx (6) 
2 2 2 2 

where g is the gauge coupling constant and σi, i = 1, 2, 3 are Pauli matrices. 
The second gauge field will be of the form 

σ1 σ2 

Ax = , Ay = (7) 
2 2 

with all other components equal to zero. 

(b) Show by explicit computation that both connections lead to the same field 
strength Fµν . 
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(c) It remains to show that the two connections given above are not gauge 
equivalent. Prove that this is the case by picking a suitable gauge covariant 
local object and showing that while it vanishes for one connection it does 
not vanish for the other (why is this sufficient ?) 

6. Quantization of non-Abelian gauge theories (18 points) 

(a) Derive the propagator for the gauge field in the axial gauge 

Aa
z = 0 . (8) 

(b) Consider the generalized gauge Coulomb gauge, i.e. taking the gauge fixing 

function as fa = ∇·A~a. Derive the ghost Lagrangian and ghost propagator. 
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