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1 
2A B A+B+ [A , B] (10 points) Problem 1: Proof of e

In discussing particle creation by a classical source, we made use of the identity 

= e
e


1 
2e A e B = e A+B+ [A , B] , (1.1)


which is true whenever A and B are operators which both commute with [A ,  B]: 

[A ,  [A ,  B]] = 0 , [B ,  [A ,  B]] = 0 . (1.2) 

This identity is a special case of the Baker-Campbell-Hausdorff identity, which does 
not require condition (1.2), and for which the exponent on the right-hand side 
of Eq. (1.1) is an infinite series of iterated commutators beginning with the terms 
shown here.  Your assignment for this problem is to prove Eq. (1.1), using Eqs. (1.2).  

Suggestion: One way to do it is to introduce a parameter λ, to allow the operators 
to be varied continuously from zero to their full values. That is, one can write 
Eq. (1.1) for the operators λA and λB: 

1 
2 λ2[A , B] .
 (1.3)
λA λB λA+λB+= e
e e


If one defines 
F1(λ) ≡ e λA e λB , 

(1.4) 
λ2[A , B] ,


1 
2F2(λ) ≡ e λA+λB+

then our goal is to prove that F1(λ) =  F2(λ). Clearly 

F1(0) = F2(0) = I ,  (1.5) 

where I is the identity operator, and 

dF1(λ) 
dλ 

= AF1(λ) +  F1(λ) B .  (1.6) 

The problem is then solved if we can show that F2(λ) also satisfies the differen­
tial equation (1.6), since the differential equation and the initial condition (1.5) 
determine the solution uniquely. 

† This version replaces the March 21 version, which had an error in Eq. (1.6). 
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Problem 2: A Composite Operator (15 points) 

Since φ(x) is not an operator, but instead an operator-valued distribution, 
the quantity φ2(x) is not defined. There is no general definition for the square of 
a distribution. For example, you are probably aware that the square of a delta-
function makes no sense. Nonetheless it is possible to define a composite operator 
: φ2(x) : which has some, but not all, of the properties that one would naively expect 
for the square of the operator φ(x). Note for example that some operator of this sort 
is necessary to give a quantum treatment to the energy density, which classically is 
given by 

T 00 =
1 
φ̇2 +

1 ∇φ · ∇φ +
1 
m 2φ2 . (2.1)

2 2 2 

The other terms lead to similar issues in their definition, but for now we will deal 
only with the φ2 term. The other terms can be treated in the same way, so by 
the time you finish this problem you will be prepared to calculate the quantum 
properties of T 00 . 

Starting with 

φ(x) =  
(2
d
π

3p 
)3 

� 
2
1 

Ep 

� 
a(�p)e −ip·x + a †(�p)eip·x 

� 
, (2.2) 

it seems natural to define 

: φ2(x) :  ≡ 
d3p � 

1 d3q � 
1 

a(�p) a(�q ) e −i(p+q)·x 

(2π)3 2Ep (2π)3 2Eq (2.3) 

+ 2  a †(�p) a(�q ) e i(p−q)·x + a †(�p) a †(�q ) e i(p+q)·x . 

The above expression is obtained by naively squaring the expression in Eq. (2.2), and 
then normal ordering, which means to move the annihilation operators to the right 
of the creation operators. (To combine the two cross-terms one must also realize 
that �p and �q are variables of integration, so their names can be interchanged.) 
Since the commutator of a creation and annihilation operator is a c-number, the 
normal ordering is equivalent to subtracting a c-number from the expression. The 
c-number can be viewed as the vacuum expectation value of the expression before 
normal ordering. The c-number subtraction is infinite, since the commutator is 
integrated over �p . 

The : : notation indicates normal ordering, which is essential in defining a 
φ2 operator that gives finite matrix elements for physical states. To make sense 
out of Eq. (2.3), however, one must remember that it must not be considered an 
operator, but rather an operator-valued distribution. Eq. (2.3) is correct, but its 
interpretation has some subtleties to explore. 
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(a) Show that 
0 : φ2(x) :  :  φ2(y) : 0 = 2D2(x− y) ,	 (2.4) 

where 
D(x− y) ≡ 〈0 |φ(x) φ(y)| 0〉 . (2.5) 

This is a special case of Wick’s theorem, which we will learn about in Chapter 
4 of Peskin and Schroeder. 

(b) Since	 : φ2(x) : is an operator-valued distribution, let us integrate it with a 
smooth weight function to see if we obtain a well-behaved operator. Call the 
weight function w(�x), and consider the quantity 

O3[w] ≡ d3 xw(�x) :  φ2(�x, t) :  .	 (2.6) 

The normal ordering insures that 〈0 |O3[w]| 0〉 = 0, so the vacuum variance of 
O3[w] is  given  by  

σ2 = 
� 
0 

� �O2 
3[w] 

� � 0 
� 

= d3 x d3 y w(�x) w(�y) 
� 
0 

� � : φ2(�x, t) :  :  φ2(�y, t) :  
� � 0 

� 

� (2.7) 

= 2  d3 x d3 y w(�x) w(�y) D2(�x− �y) . 

For spacelike separations we know from Problem Set 4 that 

m 
D(x− y) =  K1(mr) ,	 (2.8)

4π2r 

where K1(z) denotes a modified Bessel function, as defined for example in Grad­
shteyn and Ryzhik (Table of Integrals Series and Products, Academic Press), 
and r2 = −(x − y)2. Use the asymptotic behavior of the modified Bessel 
function to show that the integral in Eq. (2.7) does NOT converge.  

To cure the convergence problem, two steps are necessary. First, to regulate 
: φ2(x) : we must smear in time as well as in space. This is the generic case in 
quantum field theories— the field φ(x) represents the unusual case in which smearing 
in space alone is sufficient. So we introduce a smearing function w(xµ) for 4-vectors, 
and define � 

O4[w] ≡ d4 xw(xµ) :  φ2(xµ) :  .	 (2.9) 

The analogue to Eq. (2.7) is then 

σ2 = 
� 
0 �O4

2[w]� 0 
� 

= d4 x d4 y w(xµ) w(yµ) 
� 
0 � : φ2(xµ) :  :  φ2(yµ) :  � 0 

� 

�	 (2.10) 

= 2  d4 x d4 y w(xµ) w(yµ) D2(xµ − yµ) . 
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This step alone does not quite solve the problem, because the integral will still have 
a divergence when xµ is very near yµ. The right answer is finite, however, and the 
ambiguity of the integration shown in (2.10) can be eliminated in several alternative 
ways. 

The ambiguity arises because 0 : φ2(xµ) :  :  φ2(yµ) :  0 was treated in 
Eq. (2.10) as if it were an ordinary function, while in fact it must be considered 
a distribution. To understand its definition as a distribution, we can go back to 
Eq. (2.9).  The right-hand side cannot be interpreted as an ordinary integral, be­
cause : φ2(xµ) : is not a function. When we say that : φ2(xµ) : is a distribution, we 
mean that it is a recipe for defining an operator for every acceptable test function 
w(xµ). Eq. (2.9) does not define O4[w] as an integral, but is instead just a sym­
bolic way of saying the O4[w] is the result of applying the distribution : φ2(xµ) :  to  
the test function w(xµ). The explicit definition of O4[w] can be obtained by using 
Eq. (2.3) to replace : φ2(x) : on the right-hand side of Eq. (2.9).  One can then 
integrate over xµ, giving an expression of the form 

O4[w] =  
(2
d
π

3p 
)3 

� 
1

2p0 (2
d
π

3q 
)3 

� 
1

2q0 
a(�p) a(�q ) w̃(−qµ − pµ) +  . . .  , (2.11) 

where � 
w̃(pµ) ≡ d4 xw(xµ) eip·x (2.12) 

is the Fourier transform of w(xµ), and p0 and q0 on the right-hand side are deter­
mined by the usual relations p0 = �p2 + m2, q0 = �q 2 + m2. Note that integrat­

µing over x before integrating over �p and �q appears to be a change in the order 
of integration, and such changes are often unjustified when divergent integrals are 
involved. However, our goal is to define the distribution : φ2(xµ) : , which is syn­
onymous with defining O4[w]. Eq. (2.11) is the definition we need, and Eq. (2.3) is 
correct only in the sense that it is interpreted as shorthand for Eq. (2.11).  

(c) Fill in the “. . .” part of Eq. (2.11).  

(d) Use your expression for Eq. (2.11) to express 0 �O4
2[w]� 0 as a convergent 

integral over two three-vectors �p and �q , treating  w(xµ) as an arbitrary test 
function. 

Pedagogical Note: Another way to get the right answer is to use Eq. (2.10), but with 
an appropriate definition for D(xµ − yµ) as a distribution. This is the approach 
normally followed for the Feynman propagator (i.e., the time-ordered product), 
Eq. (2.59) of Peskin and Schroeder: 

DF (x− y) ≡ 
(2
d
π

4p 
)4 p2 − m

i 
2 + iε 

e −ip·(x−y) . (2.13) 
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As we will see later, amplitudes are calculated by inserting the Feynman propagator 
into integrals which are always carried out before the limit ε → 0 is taken. This is 
one way of defining a distribution. The analogous expression for the simple (non­
time-ordered) product is a refinement of Peskin and Schroeder’s Eq. (2.50): 

D(x − y) =  〈 0 | φ(x) φ(y)| 0〉 = 
(2
d
π

3p 
)3 2E

1 

p 
e −ip·(x−y−iεn) 

(2.14) 

=
d4p

δ(p 2 − m 2)θ(p 0)e −ip·(x−y−iεn) ,
(2π)3 

µwhere n = (1, 0, 0, 0) is a unit vector in the positive time direction. Note that 
the insertion of the iε term causes the integral to be absolutely convergent, and it 
also regularizes the infinity that would otherwise occur for x = y. With the iε in 
place the integral in Eq. (2.10) becomes absolutely convergent, which allows the 
integrations to be rearranged to match the answer that you should have found in 
part (d). 

(e) Consider the special case where w(xµ) is a normalized Gaussian in both space 
and time: 

w(xµ) =  
π3/

1 
2a3 

e−|�x|2/a2 · √ 
1 
π b

e −(x 0 )2/b2 

. (2.15) 

For fixed b, show that 

0 �O4
2[w]� 0 −−−−→ const a β , (2.16) 

a→∞ 

where β is a constant that you are to determine. (You need not find the 
constant of proportionality.) Does β agree with what you found in Problem 
Set 3, Problem 1, for the variance of a smeared scalar field φ(xµ)? Does this 
agree with what we would expect from the assumption that in the limit of large 
a, O4

2[w] samples many independent values of : φ2 : ?  

(f) One property that one might naively expect for the square of an operator is 
positivity, but : φ2(xµ) : is not positive. (Heuristically we can imagine that we 
constructed : φ2 : by  first  squaring  φ, but then we made an infinite subtraction 
which spoils the positivity.) Show that : φ2 : is not positive by constructing a 
state | ψ〉 such that 

〈 ψ | O4[w]| ψ〉 < 0 , (2.17) 

using the Gaussian weight function of Eq. (2.15).  I would recommend looking 
for a state | ψ〉 of the form 

| ψ〉 = | 0〉 + δ | ψ1〉 , (2.18) 

where δ is an arbitrarily small positive constant, so that only contributions 
to first order in δ need be considered. You need not evaluate 〈 ψ | O4[w]| ψ〉 
completely, as long as you show that it is negative. 
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Problem 3: Application of path integrals: The harmonic oscillator in 
thermal equilibrium (15 points) 

The study of a harmonic oscillator in thermal equilibrium provides a beautiful 
illustration of how path integrals can save work. Consider a harmonic oscillator 
described by the Hamiltonian 

1 
H = (p 2 + ω2 q 2) , (3.1)

2 

where I have chosen units for which the mass m is unity. The canonical commutation 
relations, as usual, imply that 

[q ,  p] =  i ,  (3.2) 

where h̄ has also been set equal to one. Creation and annihilation operators can be 
defined by 

† 1 
a = √ (p + iωq)

2ω
(3.3)

1 
a = √ (p− iωq) . 

2ω

(a) Show that the canonical commutation relations (3.2) imply that 

a ,  a  † = 1  . (3.4) 

(b) Using the creation and annihilation operators, show that the energy En of the 
nth excited state is given by 

1 
En = n + ω ,  (3.5)

2 

and that � � � � � � 1 1 
n �q 2 � n = n + . (3.6)

ω 2 

(c) To find the expectation value of q2 in the canonical ensemble with temperature 
T , canonical methods are very effective. The canonical ensemble expression for 
q2 is given by 

2 1 
∞

−βEn �q 2 �q = e n n , (3.7)
Z 

n=0 

where 
1 

β = , (3.8)
kT 
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k is Boltzmann’s constant, and 

∞ 

Z = e −βEn . (3.9) 
n=0 

Show that 
1 

Z = � 
1 

� ,	 (3.10)
2 sinh  βω2 

and find an expression for q2 in terms of β and ω. 

(d) While canonical methods allow one to find	 q2 fairly easily, it is much harder 
to find the probability distribution for measurements of the coordinate q. The 
probability density P (q̄) is defined so that the probability of finding q between 
q̄ and q̄ + dq is given by P (q̄) dq. For the eigenstate |n〉, P (q̄) =  |ψn(q̄)|2 , 
where ψn(q̄) is the Schrödinger wave function. In the thermal ensemble, the 
probability density is given by 

P (q̄) =  
1 

∞ 

e −βEn |ψn(q̄)|2 
.	 (3.11)

Z 
n=0 

This sum is rather difficult to evaluate using canonical methods, but can be 
evaluated relatively easily by using path integral methods. Begin by showing 
that Eq. (3.11) can be rewritten as 

1 � � � � 
P (q̄) =  q̄ �e −βH � q̄ . (3.12)

Z 

Eq. (3.12) can be evaluated as a path integral, thinking of it as describing evolution 
by “imaginary time” −iβ. The path integral expression is given by 

� � τ=β/2 � � 
q̄ 
� �e −βH 

� � q̄ � ∝ Dq(τ)� � e −SE [q(τ)] , (3.13) 
τ=−β/2 � 

q(β/2)= ̄q 
q(−β/2)= ̄q 

where � � 
1 

� β/2 � 
dq 

�2
2SE [q(τ)] = dτ + ω2 q	 (3.14)

2 −β/2 dτ 

is the Euclideanized action, where “Euclideanized” means that it has been analyti­
cally continued to imaginary time. The derivation of this path integral expression 
is completely analogous to the derivation given in class for the “real time” case, and 
you are not asked to repeat it. 
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(e) The path integral (3.13) can be evaluated by finding a classical solution which 
extremizes the Euclidean action, and then shifting variables to use new variables 
that describe the deviation from this classical solution. As a first step, find the 
classical solution qcl(τ) which extremizes the action (3.14), and satisfies the 
required boundary conditions: qcl(−β/2) = qcl(β/2) = q.̄

(f)  Keeping  in mind that  in the  path  integral 	q(τ) describes an infinite set of 
integration variables, one for each τ , define a new set of integration variables 

q ′(τ) =  q(τ) − qcl(τ) .	 (3.15) 

Show that 
SE [q(τ)] = SE [q ′(τ)] + SE [qcl(τ)] . (3.16) 

That is, show that cross terms involving both q′(τ) and  qcl(τ) vanish.  

(g) Use these results to show that 

P (q̄) =  √ 
1 

e −q 2/(2σ2) , (3.17)
2π σ 

where 
1 

� 
1 

� 

σ2 = coth βω .	 (3.18)
2ω 2 

Remember that once one has used the path integral to determine the answer 
up to an unknown constant of proportionality, that constant can be fixed by 
normalizing the probability distribution so that it integrates to one. Is your 
result consistent with the expectation value that you found in part (c)? 

[NOTE: For more information about path integrals, see for example Feynman and 
Hibbs, Quantum Mechanics and Path Integrals (McGraw Hill, 1965). Problems of 
this sort are discussed in Chapter 10.] 


