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8.323: Relativistic Quantum Field Theory I 
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PROBLEM SET 2 

REFERENCES: Peskin and Schroeder, Section 2.3 and part of 2.4, through p. 29. Also 
Lecture Notes 1 (or Lecture Slides 1): Quantization of the Free Scalar Field. 

Problem 1: Complex scalar fields (10 points) 

Peskin and Schroeder, Problem 2.2. The problem as stated in the original printing 
asked you to find 4 conserved currents for the theory with two complex scalar fields. 
There are actually 6 conserved currents, as is indicated on the Peskin and Schroeder 
corrections web page, 

http://www.slac.stanford.edu/∼mpeskin/QFT.html 
and in the newer printings of the book. You will get full credit for finding the same four 
that Peskin and Schroeder found, and their generalization for n fields. If you can find all 
six currents for two fields and their generalization for n fields, you will get extra credit, 
for a maximum of 12 points. 

Problem 2: Lorentz transformations and Noether’s theorem for scalar fields 
(continued) (10 points) 

In Problem 4 of Problem Set 1, you showed that the Lorentz invariance of the theory 
of a single scalar field leads to a conserved current (∂µ j

µλσ =  0) that can  be  written  as  

jµλσ = x λ Tµσ − x σ Tµλ , 

where 
Tµν = ∂µφ∂ν φ − ηµν � . 

The conserved quantities are then 

Mλσ ≡ d3x j0λσ . 

Express these conserved quantities in terms of creation and annihilation operators. [Hint: 
For the case where λ and σ are both spacelike, the conserved quantity can be written as 

M ij ≡ εijkJ
k , 

where εijk is the fully antisymmetric Levi-Civita tensor. One then finds that 

J i = −iεijk (2
d3

π

p 
)3 
pj a †(�p) 

∂a

∂p

(�p
k 

) 
. 

In the course of the derivation you will find ill-defined c-number contributions. You should 
verify the above expression for J i, arguing that the c-number contributions vanish due 
to a symmetry argument. You should also calculate the answer for the case where λ = 0,  
σ = i.] 
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Problem 3: Lorentz transformations and Noether’s theorem for the electro­
magetic potential Aµ(x) (10 points) 

Consider again the electromagnetic potential Aµ(x), as discussed in problem 2.1 of 
Peskin and Schroeder. The Lagrangian is 

1 
� = − Fµν F µν , (1)

4 

where 
Fµν = ∂µAν − ∂ν Aµ . (2) 

In problem 2.1 we learned that translation invariance and Noether’s theorem lead to 
a nonsymmetric energy-momentum tensor, which can be made symmetric by adding a 
piece that has the form of a total derivative that is automatically conserved regardless 
of the equations of motion. We discussed in lecture, however, how the conservation of 
angular momentum forces one to use a symmetric energy-momentum tensor, so that the 
cross product of �r and the momentum density T 0i gives a conserved angular momentum 
density 

� i = εijk x
j T 0k . (3) 

If T µν is both conserved and symmetric, then this angular momentum density can be 
written as the 0th component of the divergenceless current 

Kµλσ = x λ T µσ − x σ T µλ , (4) 

where 
∂µK

µλσ = 0  and  � i = εijk K
0jk . (5) 

One might hope, therefore, that if one derived the conservation of angular momentum 
by using rotational symmetry and Noether’s theorem, then one would be led directly to 
a symmetric energy-momentum tensor. This hope, however, is not realized, as will be 
shown in this problem. 

We are interested mainly in rotations, but for the sake of generality we will consider 
arbitrary Lorentz transformations, which include rotations as a special case. Since Aµ(x) 
is a Lorentz vector, under a Lorentz transformation x′µ = Λµ

ν x
ν it transforms as 

A′µ(x ′) = Λµ
ν A

ν (x) . (6) 

For an infinitesimal Lorentz transformation Λµ
ν = δν

µ −Σµ
ν , where  Σµν is antisymmetric 

as discussed in the previous problem, the symmetry tranformation becomes 

A′µ(x) =  Aµ(x) + Σλσ 
� 
x σ ∂λAµ(x) − ηµλ Aσ (x) 

� 
. (7) 
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(a) Show that the above symmetry leads via Noether’s theorem to the conserved current 

jµλσ = x σ 
� 
Fµκ ∂λAκ + ηµλ � 

� − Fµλ Aσ − (λ ↔ σ) . (8) 

Here “−(λ ↔ σ)” means to subtract an expression identical to everything previously 
written on the right-hand side, except that the subscripts λ and σ are interchanged. 

(b) Show directly from the equations of motion that the above current is conserved 
(∂µj

µλσ = 0). Thus Noether’s theorem leads to a conserved current, as it must, but 
since Eq. (8) does not match the form of Eq. (4), the conserved angular momentum 
current can be constructed without using a symmetric energy-momentum tensor. 

(c) As in Peskin and Schroeder’s problem 2.1, we can construct a modified form of the 
conserved current by adding a derivative term: 

̂µλσ = jµλσ + ∂κN
κµλσ , (9) 

where Nκµλσ is antisymmetric in its first two indices and in its last two indices. 
Show that if 

Nκµλσ = x λ Fµκ Aσ − x σ Fµκ Aλ , (10) 

then ̂µλσ can be written in the form of Eq. (4), with a symmetric energy-momentum 
tensor. 

Problem 4: Non-uniqueness of the harmonic oscillator quantization (10 points) 

On p. 20 of Peskin and Schroeder, the authors show that the Fourier expansion 
function φ(�p, t) obeys the equation of motion of a harmonic oscillator, and they then 
reflexively invoke the standard quantization procedure. While the results they obtain are 
certainly correct, we show in this problem that their logic is insufficient. The classical 
equations of motion do not imply a unique quantization. Rather, one needs a classical 
canonical formulation to determine the corresponding quantum theory. 

Consider for example a classical quantity x(t) that obeys the simple harmonic equa­
tion of motion 

d2x 
= −ω2 x .  (1)

dt2 

We will show in this problem that there are nonstandard ways in which such a quantity 
can appear in a quantum theory. 

We will start by formulating a standard harmonic oscillator, described by the La­
grangian 

1 1 
L = q̇2 − ω0

2 q 2 . (2)
2 2
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Then p = ∂L/∂ q̇ = q̇, and we as usual require that [q, p] =  i. The creation and annihila­
tion operators are defined in the usual way, 

ω0 i 
a = q + √ p

2 2ω0 � (3) 

a † = 
ω

2 
0 
q − √ 

2
i

ω0 
p ,  

and can then be shown to satisfy the usual commutation relation [a, a†] =  1. The  

Hamiltonian can be written as H = ω0 a
†a + 12 , and  the  coordinate  q can then be 

written in the Heisenberg picture as 

q(t) =  e iHt qe −iHt = √ 
2
1 

ω0 
a e  −iω0t + a † e iω0 t . (4) 

Everything up to here has been standard, but using this formalism we can now explore 
some alternatives to the standard quantization. 

(a) Consider the “first harmonic” operator x2, which we will define in the Schrödinger 
picture by 

x2 =
1 

a 2 + a †2 . (5)
ω0 

(Note that we are still talking about the system defined by the Lagrangian of 
Eq. (2)—we are simply considering a new operator defined on the same quantum 
mechanical Hilbert space.) Find an expression for the Heisenberg operator x2(t) 
analogous to Eq. (4). Use this expression to show that 

d2x2 = −ω2 x2, where ω = 2ω0 . (6)
dt2 

Thus x2 has the equation of motion of a harmonic oscillator of angular frequency 2ω0, 
yet it is defined on the Hilbert space of a harmonic oscillator of angular frequency 
ω0, and it is not expressed in terms of creation and annihilation operators in the 
usual way. 

(b) Show that x2 can be expressed in terms of the original operators p and q by 

2 

x2 = q 2 − 
ω

p
2 . (7) 
0 

Now use the Heisenberg equations of motion for q and p, namely  ̇q = p and ṗ = −ω0
2q, 

to confirm that x2(t) obeys Eq. (6).  
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(c) Construct a second harmonic operator x3, which oscillates with angular frequency 
3ω0. Construct it first in terms of creation and annihilation operators, analogous to 
Eq. (5), and then re-express it in terms of q and p. Note that the overall normalization 
of x3 is arbitrary, so don’t worry about how to fix it. 

(d) As an alternative way of seeing that there are ambiguities in the quantization of 
an operator obeying the harmonic oscillator equation of motion, consider the one-
parameter class of Hermitian operators defined in the Schrödinger picture by 

1 † zλ ≡ √ a(1 + λN) + (1  +  λN)a , (8)
2ω0 

where N ≡ a†a is the number operator (i.e., N |n〉 = n |n〉). Find an expression for 
the Heisenberg operator zλ(t), and show that it obeys 

d2zλ = −ω0
2 zλ . (9)

dt2 

Problem 5: Space-time translations of ak (10 points) 

(a) Show that for any operators A and B, 

1 1 
e ABe−A = B + [A ,  B] +  [A ,  [A ,  B]] + [A ,  [A ,  [A ,  B]]] + . . .  .  

2 3! 

(b) Now apply this relation to the space-time translation operator on the Fock space of 
free scalar particles. These translations are generated by the 4-momentum operator, 

P̂µ = 
(2
d

π

3k 
)3 
kµak

† 
ak , 

where k0 ≡ Ek = �k2 + m2, and  a † 
k and ak are the single particle creation and 

annihilation operators, normalized as in Peskin and Schroeder. Show that 

iP̂ ·x −iP̂ ·x −ik·x e ake = ake . 




