## Physics 8.322, Spring 2003 Homework #8

Due Wednesday, April 16 by 4:00 PM in the 8.322 homework box in 4-339B.

- 1. Sakurai: Problem 6, Chapter 6 (page 378)
- **2.** Find all Young diagrams for N=5. Compute  $D_{\lambda}$  for each diagram, and check  $\sum_{\lambda} D_{\lambda}^2 = N!$ .
- **3.** (a) Describe the decomposition of  $(\mathcal{H}_2)^5$  into irreps of  $S_5$  and SU(2).
  - (b) Describe the decomposition of  $(\mathcal{H}_3)^4$  into irreps of  $S_4$  and SU(3).
- **4.** Write out all the  ${}^2P$  wavefunctions explicitly for a  $p^3$  configuration.
- 5. What are the possible multiplets for a  $d^3$  configuration? Characterize the space and spin parts of the wavefunction for each multiplet under  $S_3$  permutations.
- **6.** Find the wavefunction for a proton with  $s_z = +1/2$  in a basis of flavor and spin quark eigenstates  $(e.g. \Delta^{++} = |u^{\uparrow}u^{\uparrow}u^{\uparrow}\rangle)$ . You may assume the color wavefunction is antisymmetric.