Physics 8.322, Spring 2003 Homework #11

Due Wednesday, May 7 by 4:00 PM in the 8.322 homework box in 4-339B.

- 1. For hard sphere scattering as discussed in class, numerically evaluate and graph the following quantities:
 - (a) $|f(\theta)|^2$ as a function of θ for the following values of ρ : 0.1, 0.5, 1, 10, 25, 100
 - (b) $\sigma_{\rm tot}/(\pi R^2)$ as a function of ρ for $\rho \leq 100$.
- 2. Sakurai: Problem 8, Chapter 7 (page 443)
- 3. Sakurai: Problem 9, Chapter 7 (page 444)
- 4. Determine the phase shift δ_0 for scattering from the potential $V(r) = -V_0 e^{-r/a}$. Analyze the connection between δ_0 and the spectrum of bound states for this potential in the case l = 0.
- 5. Consider the elastic scattering of fast (but nonrelativistic) electrons from an atom consisting of a point nucleus of charge Z and a spherically symmetric charge distribution of atomic electrons $\rho(r)$. Show that in the first Born approximation the scattering amplitude is

$$f(\theta) = \frac{2mZe^2}{\hbar\kappa^2} \left(1 + \frac{4\pi}{Z|e|} \int_0^\infty r^2 dr \rho(r) \frac{\sin \kappa r}{\kappa r} \right)$$

where $\kappa = 2k \sin \theta/2$. Compute and graph $\sigma(\theta)$ for an electron with energy 1 keV scattering from the potential

$$\rho(r) = \begin{cases} -\frac{3Z|e|}{4\pi a_0^3}, & r \le a_0\\ 0, & r > a_0 \end{cases}$$