Physics 8.321, Fall 2002

Homework #8

Due Monday, November 4 by 4:30 PM in the 8.321 homework box in 4-339B.

- 1. Sakurai: Problem 28, Chapter 2 (page 149)
- 2. Sakurai: Problem 29, Chapter 2 (page 149)
- 3. Sakurai: Problem 30, Chapter 2 (page 149)
- **4.** Sakurai: Problem 31, Chapter 2 (page 149). Note: in part a, the action should be expressed as a function of the initial and final positions. In part b include terms up to order Δt , but you can drop terms of order $(\Delta t)^2$.
- 5. Consider a simple harmonic oscillator of frequency ω which begins in the state

$$|\psi(0)\rangle = c_0 e^{\phi_0 a^{\dagger}} |0\rangle$$

where $\phi_0 = \alpha + i\beta$ is an arbitrary complex number and $c_0 = \exp(-|\phi_0|^2/2)$.

- (a) Solve the equation of motion for $|\psi(t)\rangle$.
- (b) Evaluate $\langle x \rangle, \langle p \rangle$ as functions of time.
- (c) Describe the wavefunction associated with $|\psi(t)\rangle$ in terms of modulus $\rho(x)$ and phase S(x). Give the physical interpretation of the modulus and phase. Describe qualitatively what happens to the wavefunction over time. Compare with the time-development of a free particle given an initial Gaussian state.
- 6. Derive the propagator for the simple harmonic oscillator

$$K(x,t;x',t_0) = \sqrt{\frac{m\omega}{2\pi i\hbar \sin\left[\omega(t-t_0)\right]}} \exp\left[\frac{im\omega}{2\hbar \sin\left[\omega(t-t_0)\right]} \left((x^2+x'^2)\cos\left[\omega(t-t_0)\right]-2xx'\right)\right]$$