Physics 8.321, Fall 2002

Homework #4

Due Wednesday, October 9 by 4:30 PM in the 8.321 homework box in 4-339B.

- 1. Sakurai: Problem 21, Chapter 1 (page 64)
- 2. Sakurai: Problem 22, Chapter 1 (page 64)
- **3.** Let $H = \frac{p^2}{2m} + V(x)$ be the Hamiltonian for a one-dimensional quantum system with discrete eigenstates $H|a\rangle = E_a|a\rangle$. Show the following results:
 - (a) $\sum_{a'} |\langle a|x|a'\rangle|^2 (E_{a'} E_a) = \frac{\hbar^2}{2m}$.
 - (b) $\langle a|p|a'\rangle = \frac{im}{\hbar} (E_a E_{a'}) \langle a|x|a'\rangle$ and hence $\sum_{a'} |\langle a|x|a'\rangle|^2 (E_{a'} - E_a)^2 = \frac{\hbar^2}{m^2} \langle a|p^2|a\rangle$.
 - (c) Generalize to 3 dimensions and show the quantum virial theorem $\langle a|\frac{p^2}{2m}|a\rangle=\frac{1}{2}\langle a|\mathbf{x}\cdot\nabla V(\mathbf{x})|a\rangle$.
- **4.** A particle of mass m is in a 1D potential $V(x) = v\delta(x-a) + v\delta(x+a)$ where v < 0.
 - (a) Find the wave function for a bound state with even parity $(\psi(x) = \psi(-x))$.
 - (b) Find an expression for the energy for even parity states, and determine how many such states exist.
 - (c) Solve for the even parity bound state energy when $\frac{ma|v|}{\hbar^2} \ll 1$.
 - (d) Repeat parts (a) and (b) for odd parity $(\psi(x) = -\psi(-x))$. For what values of v are there bound states?
 - (e) Find the even and odd parity state binding energies for $\frac{ma|v|}{\hbar^2} \gg 1$, and explain physically why these energies move closer together as $a \to \infty$
- **5.** Define the coherent state $|\phi\rangle = e^{\phi a^{\dagger}}|0\rangle$, where ϕ is a complex number, a^{\dagger} is the creation operator for a harmonic oscillator, and $|0\rangle$ is the oscillator ground state. Show that $|\phi\rangle$ has the following properties:
 - (a) $|\phi\rangle = \sum \frac{\phi^n}{\sqrt{n!}} |n\rangle$
 - (b) $a|\phi\rangle = \phi|\phi\rangle$
 - (c) $\langle \phi | \phi' \rangle = e^{\phi^* \phi'}$
 - (d) $\langle \phi | : A(a^{\dagger}, a) : | \phi' \rangle = e^{\phi^* \phi'} A(\phi^*, \phi'),$ where $: A(a^{\dagger}, a) :$ is "normal ordered" so that all creation operators a^{\dagger} are to the left of all annihilation operators a.
 - (e) $\int \frac{d\phi^* d\phi}{2\pi i} e^{-\phi^*\phi} |\phi\rangle\langle\phi| = 1$. (completeness for coherent states)

6. Define a *squeezed state* to be a state of the form

$$|\alpha, \beta, \gamma\rangle = e^{\alpha + \beta a^{\dagger} + \gamma (a^{\dagger})^2} |0\rangle \tag{1}$$

in the single harmonic oscillator Hilbert space

- (a) Compute the norm $\langle \alpha, \beta, \gamma | \alpha, \beta, \gamma \rangle$ in the special case $\beta = 0$. What is the condition needed for this norm to be finite? Can you generalize your result to $\beta \neq 0$?
- (b) Show that the position basis state $|x'\rangle$ can be written in the form (1), and find the associated values $\alpha(x'), \beta(x'), \gamma(x')$. Does your expression for $|x'\rangle$ give a state of finite norm in the Hilbert space?
- (c) Use your answer to (b) to give squeezed state descriptions of the kets associated with the wavefunctions $\psi(x') = \delta(x')$ and $\psi(x') = 1$.
- (d) Describe the kets associated with the wavefunctions $\delta(x' \pm y')$ in squeezed state form

$$\exp\left[F(a_x^{\dagger}, a_y^{\dagger})\right] (|0\rangle_x \otimes |0\rangle_y)$$

where F is a quadratic function of $a_x^{\dagger}, a_y^{\dagger}$.