Physics 8.321, Fall 2002 Homework #10

Due Monday, November 25 by 4:30 PM in the 8.321 homework box in 4-339B.

- 1. Sakurai: Problem 12, Chapter 3 (page 243)
- 2. Sakurai: Problem 15, Chapter 3 (page 244)
- 3. Sakurai: Problem 17, Chapter 3 (page 244)
- **4.** Consider a magnetic monopole with magnetic charge g located at the point (0,0,d), and a second monopole with magnetic charge -g located at the point (0,0,-d). Find an expression for the vector potential associated with this configuration which is nonsingular for r > d. Describe the "Dirac string" of this configuration.
- 5. Compute the spherical harmonics $Y_{2m}(\theta, \phi)$ explicitly. Express these both as functions of θ, ϕ and of $z = \cos \theta, x = \sin \theta \cos \phi, y = \sin \theta \sin \phi$. Compute $\sum_{m} |Y_{2m}|^2$.
- **6.** An l=1 state has m=1. The state is rotated by an angle θ about the y axis. What is the probability that a measurement of L_z will yield m=1? Repeat with a rotation by θ about the z direction.
- 7. Using separation of variables, show that the eigenstates of the Hamiltonian for a spherically symmetric potential $V(\mathbf{r})$ may be written in the form

$$\Psi_{E,l,m} = R_{El}(r)Y_{lm}(\theta,\phi)$$

where $R_{El}(r) = \frac{1}{r} u_{El}(r)$ and u_{El} satisfies

$$\left[-\frac{\hbar^2}{2m} \frac{d^2}{dr^2} + \frac{\hbar^2 l(l+1)}{2mr^2} + V(r) \right] u_{El}(r) = E u_{El}(r).$$

8. Consider a particle in the 2D potential (m=1)

$$V(x,y) = \frac{1}{2}\omega^{2}(x^{2} + y^{2}).$$

Use raising and lowering operators a_x^{\dagger} , a_y^{\dagger} , a_x , a_y to compute the spectrum and degeneracies of the Hamiltonian. For each value of the energy, what eigenvalues of J_z are possible? Are H, J_z a complete set of commuting observables?