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Quiz 2 

Name Solutions (please print) 
Last First 

1. Work any 7 of the 9 problems ­ indicate clearly which 7 you want graded. 
2. Spend 10 or 15 minutes reviewing the problems, and select 7. 
3. Immediately after this you have two continuous hours to work the problems. 
4. All problems are worth 14 points; everyone gets 2 points just for taking the exam. 
5. Closed book exam; you may use two pages of notes, and a calculator. 
6. Wherever possible, try to solve the problems using general analytic expressions. 

Plug in numbers only as a last step. 
7. If you have any questions, e­mail the Instructor. 
8. Turn exam in during lecture, Friday, April 21. 

Time Started: Time Stopped: 

Signature 

Problem Grade Grader 
1 
2 
3 
4 
5 
6 
7 
8 
9 

Total 



APPROXIMATE VALUES OF USEFUL CONSTANTS


Constant cgs units mks units 

c (speed of light) 
G (gravitation constant) 
k (Boltzmann’s constant) 
h (Planck’s constant) 
mproton 

eV (electron Volt) 
M� (solar mass) 
L� (solar luminosity) 
R� (solar radius) 
σ (Stefan­Boltzmann cons) 
Å(Angstrom) 

3 × 1010 

7 × 10−8 

1.4 × 10−16 

6.6 × 10−27 

1.6 × 10−24 

1.6 × 10−12 

2 × 1033 

4 × 1033 

7 × 1010 

6 × 10−5 

10−8 

cm/sec 
dyne­cm2/g2 

erg/K 
erg­sec 
g 
erg 
g 
erg/sec 
cm 
erg/cm2­sec­K4 

cm 

3 × 108 

7 × 10−11 

1.4 × 10−23 

6.6 × 10−34 

1.6 × 10−27 

1.6 × 10−19 

2 × 1030 

4 × 1026 

7 × 108 

6 × 10−8 

10−10 

m/sec 
N­m2/kg2 

J/K 
J­sec 
kg 
J 
kg 
J/sec 
m 
J/m2­sec­K4 

m 
km (kilometer) 105 cm 103 m 
pc (parsec) 
kpc (kiloparsec) 
Mpc (megaparsec) 
year 
day 

3 × 1018 

3 × 1021 

3 × 1024 

3 × 107 

86400 

cm 
cm 
cm 
sec 
sec 

3 × 1016 

3 × 1019 

3 × 1022 

3 × 107 

86400 

m 
m 
m 
sec 
sec 

AU 
1� (arc minute) 

1.5 × 1013 

1/3400 
cm 
rad 

1.5 × 1011 

1/3400 
m 
rad 

1�� (arc second) 1/200, 000 rad 1/200, 000 rad 
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Problem 1 (Short Answer Questions on Magnitudes) 

a. A globular cluster has 106 stars each of apparent magnitude +8. What is the combined 
apparent magnitude of the entire cluster? 

+8 = −2.5 log(F/F0) 

F = 6.3 × 10−4F0 

Fcluster = 106 × 6.3 × 10−4F0 = 630 F0 

mcluster = −2.5 log(630) = −7 

b. Find the distance modulus to the Andromeda galaxy (M31). Take the distance to 
Andromeda to be 750 kpc. 

d 
DM = 5 log = 5 log(75, 000) = 24.4 

10 pc 

c. An eclipsing binary consists of two stars of different radii and effective temperatures. 
Star 1 has radius R1 and T1, and Star 2 has R2 = 0.5R1 and T2 = 2T1. Find the change in 
bolometric magnitude of the binary, Δmbol, when the smaller star is behind the larger star. 
(Consider only bolometric magnitudes so you don’t have to worry about color differences.) 

F1&2 = 4πσ T 4R2 
1 + T 4R2 

1 2 2 

Feclipse = 4πσT 1
4R2 

1 

Δm = −2.5 log 
F1&2 

Feclipse 

T2
4R2 

Δm = −2.5 log 1 + 2 

T 4R2 
1 1 

16 
Δm = −2.5 log 1 + = −1.75 

4 

So, the binary is 1.75 magnitudes brighter out of eclipse than when star 2 is behind star 1. 



� 

Problem 2 (Binary System) 

The orbit of the first accretion­powered millisecond X­ray pulsar was measured here at M.I.T. 
using data from the Rossi X­Ray Timing Explorer Satellite. The Doppler delay curve for 
the motion of the neutron star is given in the figure below. The amplitude of the sine curve 
indicates the projected light travel time across the orbit of the neutron star around the center 
of mass of the binary. 

(a) Use the figure to estimate the value of ans sin(i) for this system, where i is the orbital 
inclination angle. Express your answer in cm or m. 

We can read off ans sin i from the graph = 0.063 �t­sec = 1.9 × 109cm. 

(b) Assume that the neutron star has a mass of Mns = 1.4 M� and that the orbital inclination 
is i = 30◦. The orbital period of the binary is Porb = 2 hours. Compute the mass of the 
companion star, mc. Hint: in order to solve for mc you will have to make the approximation 
that mc/Mns � 1 and, equivalently, Mns/mc � 1. 

4π2 GMtot G(Mns + Mc) G(Mns + Mc) G(Mns + Mc) 
= = 

P 2 a3 (ans + ac)3 
� 

a3 
ns(1 + Mns/Mc)3 

ns(1 + ac/ans)3 
� 

a3 

We can now take Mns � Mc to find: 

4π2 GM 3 GM 3 sin3 ic c = 
P 2 

� 
a3 M 2 (ans sin i)3M 2 

ns ns ns 

Plugging in numbers, we have: 
14π2 GMc 

3
23 

= 
72002 (1.9 × 109)3(1.4 M�)2 

Solve for Mc to find 
Mc = 0.085 M



Problem 3 (Hertzsprung­Russell Diagrams) 

The figures below show H–R diagrams for two globular clusters, NGC 1851 and NGC 5904. 
The data were obtained with the Hubble Space Telescope (HST) and reported by Piotto et 
al. (2002). For purposes of this problem you may consider the HST magnitudes F 439W and 
F 555W to be the equivalent of the apparent B and V magnitudes. 

a. Use these HR diagrams to find the ratio of the distances to the two clusters. 

The best defined feature with which to compare magnitudes between the two HR dia­
grams is, perhaps, the horizontal branch. I estimate 16th and 15th magnitudes for NGC 
1851 and NGC 5904, respectively. 

d1851 
Δ mag = 5 log � 1 

d5904 

Thus, d1851/d5904 � 1.58. 

b. If we take the absolute visual magnitude of a star on the Horizontal Branch to be 
V = +0.5, find the distance to either cluster. 

The distance modulus for NGC 1851 is DM � 16 − 0.5 = 15.5. Hence the distance is: 

distance = 10 × 1015.5/5 pc � 12, 600 pc 

c. Identify as many phases of stellar evolution as you can on one of the globular cluster 
diagrams. You may mark directly on the figure. Comment on any physical processes that 
you know are occurring in the stars at these particular phases. 

The phases and nuclear burning cycles we were looking for included: 
• main sequence; hydrogen core burning

• giant branch; hydrogen shell burning

• horizontal branch; helium core burning

Others that could have been mentioned were asymptotic giant branch, main sequence turnoff,

and blue stragglers.




Problem 4 (Galaxy Features) 

The image below is of the galaxy M101. Assume that this is a typical spiral galaxy seen 
nearly face on. 

STScI-PRC06-10aNASA and ESA

a. Give a short discourse on this image, identifying as many generic features of the galaxy 
as you can. You may write on the white space provided and draw arrows to the appropriate 
places on the figure. Indicate approximate dimensions where appropriate. Comment on the 
stellar populations in various locations and the corresponding metallicities. Roughly where 
would the Sun be located if this were the Milky Way? 

• Dimensions: 30­50 kpc in diameter; perhaps 1 kpc in thickness 
• Pop I concentrated in the spiral arms; Z � 0.02; 

Pop II concentrated in the bulge; low Z (� 0.001) 
• Possible features to point out 

spiral arms 
dust lanes 
galactic bulge 
star forming regions 
central black hole 
globular clusters (hard to discern) 
dark­matter halo 
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Problem 5 (Stellar Atmosphere Density Profile) 

A star of radius, R, and mass, M , has an atmosphere that obeys a polytropic equation of 
state: 

P = Kρ5/3 , 

where P is the gas pressure, ρ is the gas density (mass per unit volume), and K is a constant 
throughout the atmosphere. Assume that the atmosphere is sufficiently thin (compared to 
R) that the gravitational acceleration can be taken to be a constant. 

Use the equation of hydrostatic equilibrium to derive the pressure as a function of height 
z above the surface of the planet. Take the pressure at the surface to be P0. Sketch your 
solution P (z). 

Start with the equation of hydrostatic equilibrium: 

dP 
= −gρ 

dz 

where g is approximately constant through the atmosphere, and is given by GM/R2 . We 
can use the polytropic equation of state to eliminate ρ from the equation of hydrostatic 
equilibrium: � �3/5

dP P 
= 

dz 
−g

K 

Separating variables, we find: � �3/5
1 

P −3/5dP = −g dz 
K 

We then integrate the left­hand side from P0 to P and the right hand side from 0 to z to 
find: � �5 

P 2/5 − P0
2/5 

= −gK−3/5 z 
2 

Solving for P (z) we have: 

�5/2 
� �5/2 

2 g
P (z) = P0

2/5 − 
5 
gK−3/5 z = P0 1 − 

2 
2/5

K3/5 
z 

5 P0 

The pressure therefore, goes to zero at a finite height zmax, where: 

5P0
2/5

K3/5 2/3
5Kρ0 5P0 

zmax = = = 
2g 2g 2gρ0 
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Problem 6 (Galaxy Rotation Curve) 

It has been suggested that our Galaxy has a spherically symmetric dark­matter halo with a 
density distribution, ρdark(r), given by: � �2r0

ρdark(r) = ρ0 , 
r 

where ρ0 and r0 are constants, and r is the radial distance from the center of the galaxy. For 
star orbits far out in the halo you can ignore the gravitational contribution of the ordinary 
matter in the Galaxy. 

a. Compute the rotation curve of the Galaxy (at large distances), i.e., find v(r) for circular 
orbits. 

GM (< r) v2 

= (from F = ma)− 
r2 

− 
r � r � �2r0 2M (< r) = ρ0 4πr 2dr = 4πρ0r0 r 

0 r 

Note that, in general, M = ρ×volume! You must integrate over ρ(r). From these expressions 
we find: � 

2v(r) = 4πGρ0r0 = constant 

b. Find the Oort B� coefficient that would be expected at a radial distance r0. 
1[Recall: A = 
2 r0 

dω , and B = A − ω0]dr 0
− 

First we find ω(r): �

4πGρ0r2


ω(r) = 
v 

= 0 

r r 
2dω 4πGρ0r0 = 

2dr 
− 

r

dω 
√

4πGρ0 
= 

dr 
− 

r00 

1 dω � 
A = r0 = πGρ0− 

2 dr 0 

From above, � 
ω0 = 4πGρ0 

Thus, � � � 
B = A − ω0 = πGρ0 − 4πGρ0 = πGρ0− 



Problem 7 (Dimensional Analysis) 

The objective of this problem is to find a scaling law for how stellar luminosity depends on 
the mass of a (main­sequence) star. Carry out a dimensional analysis of the equation for the 
temperature gradient (for radiative diffusion): 

dT 3κρL 
= ,

dr 
− 

64πσSBr2T 3 

where L, ρ, and T are the luminosity, density, and temperature at radial distance r, and κ 
is the radiative opacity (units: cross sectional area per unit mass), and σSB is the Stefan­
Boltzmann constant. Take the radiative opacity, κ to be: 

ρ 
κ(ρ, T ) = κ0 

T 7/2 
, 

where κ0 is a constant. 

Find an expression for L as a function of M and constants, only. 

Helpful relation: A typical stellar interior temperature is given, also by dimensional analysis, 
to be T � GM µ/(kR), where µ is the mean mass per gas particle. 

A dimensional analysis of the above equation first yields: 

T κρL 
R 
∼ c1 

R2T 3 

where c1 is a constant constructed from the constants in the original dT /dr equation. By 
using the expression given for κ, we find: 

T ρ2L 
R 
∼ c2 

R2T 13/2 

where c2 = c1κ0. The expression for L is then: 

L ∼ c−1RT 15/2ρ−2 ∼ 16c−1RT 15/2M −2R6 
2 2 

where we have approximated ρ ∼ M/(4R3). Next, we make use of the given relation among 
T, M, and R from the ‘helpful relation’. 

L ∼ c3M 11/2R−1/2 

where c3 = 16c−1(Gµ/k)15/2 . This is as far as one can go with the information given in the 2 

problem. If you happened to recall that R ∝ M for stars on the main sequence, then you 
could reach the following proportionality: 

L ∼ M 5 
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Problem 8 (Helium Burning Star) 

A pure He star with mass equal to 1 M� has a radius of 0.2 R�, a central density, ρc = 104 

g cm−3 (or 107 kg m−3), and a central temperature of Tc = 1.32 × 108 K. It is in thermal 
equilibrium, which means that the nuclear luminosity generated in the interior equals the 
luminosity radiated from the surface. Consider all the He burning to take place in the central 
10%, by mass, of the star, and no burning to occur outside this region. Further, assume that 
the density and temperature throughout the nuclear burning region are constant at ρc and 
Tc. The energy released per gram per second from He burning is given by the expression: 

E(ρ, T ) � 4 × 1011ρ2T −3 exp[−42.9/T8] ergs gm−1 sec−1 .8 

For all mks units (including ρ) simply take the leading coefficient to be 40 rather than 
4 × 1011 . 

a. Find the luminosity of this He star. 

L = E(ρ, T )ρ4πr 2dr 

However, there is no need to do an integral since you are told that T and ρ are constant 
through the burning region. Thus, 

L = E(ρ, T ) ρ4πr 2dr � E(ρ, T ) × 0.1 M

Utilizing the expression for E given in the problem, we have: 

L � 4 × 1011ρ2T8
−3 exp[−42.9/T8] × 0.1 M� ergs sec−1 . 

Or, 

L � 4 × 1011(104)2(1.32)−3 exp[−42.9/1.32] × 0.1 M� � 2.7 × 1037 ergs sec−1 . 

Note that the definition of T8 was unfortunately not given in the problem; it actually means 
T/108 K. No points were taken off if you used the full temperature instead of T8. 

b. Find the effective (i.e., surface) temperature of the He star. 
Use the relation L = 4πσR2T 4 to compute Teff :
� �1/4


L 
T =

4πσR2 
� 117, 000 K 

→ 6C
12 + γ.c. The reaction that powers this star is 3 2He4 The atomic mass excess of a 

2He4 atom is 2.42 MeV and that of a 6C12 atom is 0 MeV. Find the time for all the helium 
in the core of the star (i.e., the central 10% by mass) to be burned to carbon. 

For each C atom that is formed, 3 ×2.42 MeV are released. This corresponds to 5.8 ×1017 

ergs per gram of ‘burned’ material. The mass to be converted from He to C is 0.1 M�. Thus, 
a total of (0.1 × 2 × 1033 grams × 5.8 × 1017 ergs per gram) ergs = 1.15 × 1050 ergs of energy 
will be released over the He core burning phase. At a release rate of L = 2.7 × 1037 ergs 
sec−1, this process will last for 4.3 × 1012 seconds, or 1.3 × 105 years. 



Problem 9 (Short Answer Questions) 
2a. Suppose air molecules have a collision cross section of 10−16 cm . If the (number) density 

of air molecules is 1019 cm−3, what is the collision mean free path? 

1 1 
� = = = 10−3 cm 

nσ 101910−16 

b. What is the physical mechanism by which 21­cm radiation is produced? 

Hyperfine transition in neutral hydrogen atoms in the n = 1 state. The interaction is 
between the intrinsic magnetic moment of the proton and that of the electron. 

c. What fraction of the rest mass energy is released (in the form of radiation) when a mass 
ΔM is dropped from infinity onto the surface of a neutron star with M = 1 M� and R = 10 
km? 

GM Δm 
ΔE = 

R 

The fractional rest energy lost is ΔE/Δmc2, or 

ΔE GM 
Δmc2 

= 
Rc2 

� 0.15 

d. What is the slope of a log N (> F ) vs. log F curve for a homogeneous distribution of 
objects, each of luminosity, L, where F is the flux at the observer, and N is the number of 
objects observed per square degree on the sky? 

The number of objects detected goes as the cube of the distance for objects with flux 
greater than a certain minimum flux. At the same time the flux falls off with the inverse 
square of the distance. Thus, the slope of the log N (> F ) vs. log F curve is ­3/2. 


