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Quiz 2 

Name Solutions (please print) 
Last First 

1. Work any 7 of the 10 problems ­ indicate clearly which 7 you want graded. 
2. Spend 10 or 15 minutes reviewing the problems, and select 7. 
3. Immediately after this you have two continuous hours to work the problems. 
4. All problems are worth 14 points; everyone gets 2 points just for taking the exam. 
5. Closed book exam; you may use two pages of notes, and a calculator. 
6. Wherever possible, try to solve the problems using general analytic expressions. 

Plug in numbers only as a last step. 
7. If you have any questions, e­mail the Instructor. 
8. Turn exam in during lecture, Friday, April 15. 

Time Started: Time Stopped: 

Signature 

Problem Grade Grader 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Total 



APPROXIMATE VALUES OF USEFUL CONSTANTS


Constant cgs units mks units 

c (speed of light) 
G (gravitation constant) 
k (Boltzmann’s constant) 
h (Planck’s constant) 
mproton 

eV (electron Volt) 
M� (solar mass) 
L� (solar luminosity) 
R� (solar radius) 
σ (Stefan­Boltzmann cons) 
Å(Angstrom) 

3 × 1010 

7 × 10−8 

1.4 × 10−16 

6.6 × 10−27 

1.6 × 10−24 

1.6 × 10−12 

2 × 1033 

4 × 1033 

7 × 1010 

6 × 10−5 

10−8 

cm/sec 
dyne­cm2/g2 

erg/K 
erg­sec 
g 
erg 
g 
erg/sec 
cm 
erg/cm2­sec­K4 

cm 

3 × 108 

7 × 10−11 

1.4 × 10−23 

6.6 × 10−34 

1.6 × 10−27 

1.6 × 10−19 

2 × 1030 

4 × 1026 

7 × 108 

6 × 10−8 

10−10 

m/sec 
N­m2/kg2 

J/K 
J­sec 
kg 
J 
kg 
J/sec 
m 
J/m2­sec­K4 

m 
km (kilometer) 105 cm 103 m 
pc (parsec) 
kpc (kiloparsec) 
Mpc (megaparsec) 
year 
day 

3 × 1018 

3 × 1021 

3 × 1024 

3 × 107 

86400 

cm 
cm 
cm 
sec 
sec 

3 × 1016 

3 × 1019 

3 × 1022 

3 × 107 

86400 

m 
m 
m 
sec 
sec 

AU 
1� (arc minute) 

1.5 × 1013 

1/3400 
cm 
rad 

1.5 × 1011 

1/3400 
m 
rad 

1�� (arc second) 1/200, 000 rad 1/200, 000 rad 
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Problem 1 

A star in the Andromeda galaxy yields a bolometric flux at the Earth of F = 1.0 × 10−13 ergs 
cm−2 sec−1 (1.0 × 10−16 Watts m−2). It has a B­V color index of ­0.24. Take the distance 
to Andromeda to be 1 Mpc. Make use of the table below, where appropriate, to answer 
the following questions (interpolate between entries using any interpolation scheme that is 
reasonable). The reference flux for a bolometric magnitude of 0.0 is F0 = 2.5 × 10−5 ergs 
cm−2 sec−1 (2.5 × 10−8 Watts m−2). 

a. Find the bolometric magnitude, Mbol of the star. 

1 × 10−13 

Mbol = −2.5 log 
2.5 × 10−5 

� 21 

b. What is the approximate effective temperature, Teffective, of the star. 

Te � 17250 K, based on a linear interpolation from the table; or ∼ 16850 K, based on a 
logarithmic interpolation. Let’s adopt Te � 17, 000 K. 

c. Calculate the approximate radius of the star. 

L 4πσR2T 4 

� 1 × 10−13F = = 
4πd2 4πd2 

F d2 

R = 
σT 4 

� 6.4 R� 

Table 1: Abbreviated Table of Main­Sequence Star Properties 

Spectral Type B­V 
(color) 

Mass 
(M�) 

Teffective 

(◦K) 

O5 ­0.45 40 35,000 
B0 ­0.31 17 21,000 
B5 ­0.17 7 13,500 
A0 0.00 3.5 9,700 
A5 +0.16 2.1 8,100 
F0 +0.30 1.8 7,200 
F5 +0.45 1.4 6,500 
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Problem 2 

The binary system called “Cygnus X­1” consists of a black hole (Star 1; for this problem 
considered to be a point mass) orbiting a normal star (Star 2) with a period Porb = 5.6 days. 
Optical astronomers measure the orbital motion of the normal star via Doppler shifts and 
determine a “projected” velocity of v2 sin i = 75 km sec−1 . This can be combined with the 
orbital period to determine the mass function: 

f (M ) = 0.25 M . 

The spectral type of the normal star is found to be B0. Other studies have led to a deter­
mination of the orbital inclination angle which turns out to be i = 30◦. 

Use the information above to determine the mass of the black hole. A table of stellar 
properties is given in Problem 1; use this to help you determine the mass of Star 2. If you 
have done the problem correctly you will end up with the equivalent of a cubic equation in 
the mass of the black hole, MBH. You can either solve this with Mathematica or some other 
similar computer program, or simply plug in a handful of trial solutions and “zero in” on an 
approximate answer (10% is good enough). 

MB sin i3 

f (M ) = � �2 � 0.25 M
1 + Mc 

MB 

MB � �2 � 2 M
1 + Mc 

MB 

From the table, the companion­star mass is Mc � 17 M�. So, 

MB � �2 � 2 M
1 + 17 M� 

� 

MB 

After several trial­and­error guesses for MB , we find that the left hand side of the equation 
equals 2 M�, only when MB � 11.8 M�. 
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Problem 3 

Following are HR diagrams for the globular cluster, M3, and the open cluster ­ the Pleiades. 

a. Use these HR diagrams to find the ratio of the distances between M3 and the Pleiades. 
At B­V = 0.5, for example, the main­sequence magnitudes from the two diagrams are: 

VM3 � 20, and VPl � 9.5 

But, we can write: � � 
L 

V = −2.5 log 
4πd2Fref 

We assume that stars on the main sequence with B­V = 0.5 all have the same L. Thus, 

d2 dM3
VM3 − VPl = 2.5 log M3 = 5 log � 10.5 

d2 
Pl dPl 

Thus, we find dM3 = 125 × dPl. 
b. If we take the absolute visual magnitude of a star with color B­V=0 to be MV = 0, 

find the actual distance to the Pleiades. 
V = MV + distance modulus, and I estimate V � 6.5 for B­V = 0. 
Thus, the distance modulus is ∼ 6.5, which implies a distance of ∼ 200 pc. 

c. Explain why the two HR diagrams look so different. 
The Pleiades is sufficiently young that most of the main­sequence is still in existence. By 
contrast, the track of stars running nearly vertically upward in the HR diagram for M3 
indicates that all but the least massive stars (i.e., with M � 1M�) have evolved away. 

d. How much intrinsically more luminous are stars at the top of the HR diagram for M3 
than those at the bottom? 

Vmin � 22, and Vmax � 13; ΔV � 9 

Lmin Lmax 
Vmin − Vmax = −2.5 log 

Lmax 
⇒ 

Lmin 
� 4000 



Problem 4 

The image below is of the galaxy NGC 4565. Assume that this is a typical spiral galaxy seen 
nearly edge on. 

Credit: Russell Croman 

a. Identify as many generic features of this galaxy as you can. You may write on the white 
space provided and draw arrows to the appropriate places on the figure. 

bulge 
disk 
dust lanes 
no globular clusters visible 
halo could be identified, though not visible 

b. Indicate a likely size scale beside the drawing. How thick would you guess this galaxy is 
half way out from the center? 

∼ 40 kpc in diameter 
∼ 1 kpc in thickness 

c. Indicate approximately where the Sun would be located if this were the Milky Way. 

About half way out in the disk, near the midplane 
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Problem 5 

The disk of a galaxy can be modeled as a uniform slab of material of mass density, ρ, that is 
of (full) thickness, 2H, in the ˆ x and ˆz direction, and is effectively infinite in the ˆ y directions. 
Assume that the mass density for z > H is zero. 

a. Compute the effective gravity, �g, at an arbitrary distance, z, inside and above the disk. 
Sketch �g(z) for all z (i.e., for + and − values of z). Hint: make use of Gauss’ law for gravity 

� dA = −4πGM .g · 

� dA = −4πGM g · 

For a cylindrical “pillbox” of end area, A: 

−g(z)2A = −4πGρ2Az (inside the disk) 

−g(z)2A = −4πGρ2AH (outside the disk) 

or 
g(z) = 4πGρz (inside) 

g(z) = 4πGρH (outside) 

pointing toward the midplane 

b. Find the speed, vz that a star must have, starting at the middle of the disk, to get above 
height H, i.e., just outside of the mass distribution. Express your answer in terms of ρ, G, 
and H. 

z 

φ = g(z)dz = 2πGρz2 (inside) 
0 

In order for a star to reach z = H from the midplane, its kinetic energy must exceed the 
potential energy which is equal to the result found in part (a) evaluated at z = H, and 
multiplied by the mass of the star: 

1 
mv 2 � 2πGρH2 m 

2 
or, 

v 2 � 4πGρH2 
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Problem 6 

A galaxy is found to have a rotation curve, v(r), given by 

r 
r0 

v(r) = � �3/2 
v0 , 

1 + r 
r0 

where r is the radial distance from the center of the galaxy, r0 is a constant with the dimension 
of length, and v0 is another constant with the dimension of speed. The rotation curve is 
defined as the orbital speed of test stars in circular orbit at radius r. 

a. Find an expression for ω(r), where ω is the angular velocity. What Oort A coefficient 
1would an astronomer living in this Galaxy at r = r0 measure? [Recall: A = 
2 r0 

dω 
0
]

dr
− 

v0 1 
ω = v/r ⇒ ω(r) = 

r0 1 + r/r0)3/2 

3 v0 1 
A = 

4 r0 (1 + r/r0)5/2 

which, when evaluated at r = r0 (from the definition of A), yields: 

3 v0
A = 

29/2 r0 

b. Find an expression for the mass, M(< r), contained in this galaxy inside of radius r. 
Assume a spherically symmetric mass distribution. 

From F = ma, we have: 

2GM(< r) v2 v r 
r2 

= 
r 

⇒ M(< r) = 
G 

3 2r v0M(< r) = 
2r0 (1 + r/r0)3G 



Problem 7 

Short answer questions: 

a. The density of stars in a particular globular star cluster is 106 pc−3 . Take the stars to have 
the same radius as the Sun, and to have an average speed of 10 km sec−1 . Find the mean 
free path for collisions among stars. Find the corresponding mean time between collisions. 
(Assume that the stars move in straight­line paths, i.e., are not deflected by gravitational 
interactions.) 

1 1 
=� � 

nσ 106pc−3πR2 

1 � 2 × 1027 cm 
2 

� � 
3 × 10−50cm−3 × 1.5 × 1022cm

τcoll � 
2 × 1027 cm � 2 × 1021 sec � 6 × 1013 years 
106 cm/sec 

b. A white dwarf star composed entirely of carbon (6C
12) reaches a mass of 1.4 M� and 

all the carbon burns rapidly to magnesium (12M g24). Compute the energy released in this 
reaction (you should consult the table of Atomic Mass Excess in Problem 10). Compare the 
nuclear energy released with the gravitational binding energy, U , of the white dwarf. For U 
you can use U � GM 2/R, and choose some reasonable value for R. Is there sufficient nuclear 
energy to disrupt the white dwarf, i.e., to blow it apart? 

Atomic mass excess of 6C12 ≡ 0 
Atomic mass excess of 12M g24 = −13.93 MeV 
Each reaction therefore liberates 13.93 MeV 
The number of Mg nuclei that can be made is: (1.4 M�/24 amu) � 7 × 1055 

The total nuclear energy released = 1057 MeV = 1.5 × 1051 ergs 
The gravitational binding energy, U: 

U � 
GM 2 6.7 × 10−8 × 7.8 × 1066 

� 1 × 1051 ergs
R 

� 
5 × 108 

Thus, the two energies are rather comparable, with probably sufficient nuclear energy to 
blow the star apart. 
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Problem 8 

The equation of state for cold (non­relativistic) matter may be approximated as: 

P = aρ5/3 − bρ4/3 

where P is the pressure, ρ the density, and a and b are fixed constants. Use a dimensional 
analysis of the equation of hydrostatic equilibrium to estimate the “radius­mass” relation for 
planets and low­mass white dwarfs whose material follows this equation of state. Specifically, 
find R(M ) in terms of G and the constants a and b. You should set all constants of order 
unity (e.g., 4, π, 3, etc.) to 1.0. [Hint: solve for R(M ) rather than M (R)]. You can check 
your answer by showing that for higher masses, R ∝ M −1/3 , while for the lower­masses 
R ∝ M +1/3 . 

dP 
= −gρ 

dr 

aρ5/3 − bρ4/3 GM M 
R 

∼ 
R2 R3 

aM 5/3 bM 4/3 GM 2 

R6 
− 

R5 
∼ 

R5 

aM 5/3 

GM 2 − bM 4/3∼ 
R 

aM 5/3 aM 1/3 

R ∼ 
GM 2 + bM 4/3 

� 
GM 2/3 + b 

For small masses, R ∝ M 1/3 as for rocky planets, while for larger masses, R ∝ M −1/3 as for 
white dwarfs where the degenerate electrons are not yet relativistic. 
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Problem 9 

Once a star like the Sun starts to ascend the giant branch its luminosity, to a good approx­
imation, is given by: 

105L
L = 

M 6 
� 

M 6 ,core 

where the symbol � stands for the solar value, and Mcore is the mass of the He core of the 
star. Further, assume that as more hydrogen is burned to helium – and becomes added to 
the core – the conversion efficiency between rest mass and energy is: 

ΔE = 0.007 ΔMcorec 2 . 

a. Use these two expressions to write down a differential equation, in time, for Mcore. 

ΔE 105L
L ≡ =

0.007ΔMcorec
2 

= � 
M 6 

core Δt Δt M 6 

b. Solve the differential equation for the core mass, Mcore(t), as a function of time. To make 
the problem easier, do not evaluate either L� or M� until the next step. 

dMcore 105L� dt 
= 

M 6 M 6 0.007c2 
core 

Integration yields: 
1 1 5 × 105L�t 

= 
M 5 − 

M 5 0.007M 6 c2 
, 

core,i core,f �

where the subcripts i and f stand for “initial” and “final” values, respectively. 

c. Find the time for the star to ascend the giant branch when its core mass increases from 
Mcore = 0.2 M� to Mcore = 0.5 M�. 

0.007M�c2 1 1 
t = 

5 × 105L 0.25 
− 

0.55 

Finally, plug in values for M� and L� to find: 

t � 6 × 108 yr 



Problem 10 

This problem relates to the principal nuclear burning chain that powers the Sun, the p − p 
chain. 

a. Write down the 3 nuclear reactions in the p − p chain. 

+ 
1H

1 + 1H
1 ⇒ 1H

2 + e + ν 

1H
2 + 1H

1 ⇒ 2H
3 + γ 

2H
3 + 2H

3 ⇒ 2H
4 + 2 1H

1 

b. Use the table on the following page to compute the energy released from either reaction 
involving 2He3 in part (a) – 3 significant figures are sufficient. (The table gives the atomic 
mass excesses, expressed in MeV.) 

13.13 + 7.29 ⇒ 14.93 + �, for 2nd equation 

� � 5.49 MeV 

or 

2 × 14.93 ⇒ 2.42 + 2 × 7.29 + �, for 3rd equation 

� � 12.9 MeV 

c. Compute how much energy is released, in total, from the conversion of 4 hydrogen nuclei 
into 1 helium nucleus (you may ignore the electrons). Hint: you may bypass intermediate 
reactions. 

4 × 7.29 2.42 + �⇒ 

� � 26.7 MeV 



Table 4­1 from “Principles of Stellar Evolution and Nucleosynthesis” by Donald Clayton, 
published by McGraw­Hill. 


