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Name (please print) 
Last First 

1. Work any 8 of the 10 problems - indicate clearly which 8 you want graded. 
2. Take two continuous hours to work the problems. 
3. All problems are worth 13 points. 
4. Closed book exam; you may use two pages of notes. 
5. Wherever possible, try to solve the problems using general analytic expressions. 

Plug in numbers only as a last step. 
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USEFUL CONSTANTS 

Constant cgs units mks units 
c (speed of light) 3 × 1010 cm/sec 3 × 108 m/sec 
G (gravitation constant) 7 × 10−8 dyne-cm2 /g2 7 × 10−11 N-m2/kg2 

k (Boltzmann’s constant) 1.4 × 10−16 erg/K 1.4 × 10−23 J/K 
h (Planck’s constant) 6.6 × 10−27 erg-sec 6.6 × 10−34 J-sec 
mproton 1.6 × 10−24 g 1.6 × 10−27 kg 
eV (electron Volt) 1.6 × 10−12 erg 1.6 × 10−19 J 
M� (solar mass) 2 × 1033 g 2 × 1030 kg 
L� (solar luminosity) 4 × 1033 erg/sec 4 × 1026 J/sec 
R� (solar radius) 7 × 1010 cm 7 × 108 m 
σ (Stefan-Boltzmann cons) 6 × 10−5 erg/cm2-sec-K4 6 × 10−8 J/m2-sec-K4 

Å(Angstrom) 10−8 cm 10−10 m 
km (kilometer) 105 cm 103 m 
pc (parsec) 3 × 1018 cm 3 × 1016 m 
kpc (kiloparsec) 3 × 1021 cm 3 × 1019 m 
Mpc (megaparsec) 3 × 1024 cm 3 × 1022 m 
year 3 × 107 sec 3 × 107 sec 
day 86400 sec 86400 sec 
AU 1.5 × 1013 cm 1.5 × 1011 m 
1� (arc minute) 1/3400 rad 1/3400 rad 
1�� (arc second) 1/200, 000 rad 1/200, 000 rad 



Problem 1 

Explain quantitatively how, for a given astronomical object, the difference in magnitudes at 
two different wavelengths (e.g., B − V ) yields a “color” for the object. 



Problem 2 

Describe the difference in the kind of information that can be obtained from a spectroscopic 
binary vs. a visual, astrometric binary. In each case, assume that both stars are sufficiently 
bright for study. With high-quality data, what orbital and stellar parameters can be deter­
mined? 



Problem 3 

Sketch an H–R diagram for a typical globular cluster and another H–R diagram for a typ­
ical young open cluster. Point out any interesting features that you can identify on these 
diagrams. Be as quantitative as possible in labeling the axes of the diagrams. Explain any 
differences between the two H–R diagrams. 



Problem 4 

Make a sketch of our Galaxy (top view and side view), including any qualitative structures 
contained therein and the regions that different types of objects occupy. Mark any size scales 
you know. If the Sun (more precisely, the local standard of rest) is orbiting the Galactic 
center at 230 km/sec, estimate the mass of the Galaxy interior to the Sun’s orbit (in units 
of M�). Choose whatever distance to the Galactic center you happen to know. 



Problem 5 

Suppose that we are centered on a distribution of a certain class of astrophysical object 
whose space density, n, falls off as n = n0(r0/r), where n0 is a constant with units of number 
density (objects per unit volume), r is the distance from us, and r0 is the distance at which 
the density is n0. Find the corresponding log(F ) − log(N ) curve for this population, where 
F is the flux of the object and N is the number of such objects detected with flux > F . For 
your calculation, assume that all such objects have a fixed luminosity L0. Useful relation: 
the volume of a cone of solid angle Ω is given by Ω 

� 
r2dr. 



Problem 6 

For typical spiral galaxies it is found that the rotation curves, v(R), are approximately 
constant with radial distance, R, from the center of rotation, i.e., v(R) = v0 = constant. 
Find ω(R), the angular velocity, in terms of v0 and R. Find the Oort A and Oort B 
coefficients for a galaxy with this type of rotation curve. Express your answer for A and B 

1in terms of ω(R). Recall that A ≡ − 
2 R(dω/dR) and B ≡ A − ω. 



Problem 7 

A radio telescope tuned to the region of the 21–cm line of hydrogen is pointed in the Galactic 
plane at a galactic longitude l, and the Doppler spectrum of all the hydrogen within the field 
of view is recorded. Start with the following equation to show how such data collected from 
a wide range of galactic longitudes can be used to reconstruct the rotation curve of our 
Galaxy: 

vrad = ωR0 sin(l) − ω0R0 sin(l), 

where vrad is the radial velocity of a hydrogen cloud with respect to our local standard of rest, 
ω is the angular velocity of the hydrogen cloud (which is part of the general Galactic rotation) 
at a distance R from the Galactic center, and the subscripts “0” refer to the quantities 
evaluated in the solar neighborhood. Recall that the above equation was derived for certain 
simplifying assumptions, e.g., that the orbital motion of all Galactic plane constituents is 
circular. Also, take ω0R0 = vLSR and R0 to be known constants. 



Problem 8 

A planet has a very hot atmosphere that extends to heights that are not necessarily small 
compared to its radius, R0. Use the equation of hydrostatic equilibrium to derive the density 
of the atmosphere as a function of radial distance, r, from the center of the planet. Assume 
that the atmosphere contains a negligible mass and so does not affect gravity, and that the 
temperature, T , of the atmosphere is a constant. Take the density to be ρ0 at the planet’s 
surface. Note that gravity cannot be assumed to be constant in this problem. Take the gas 
to obey the ideal gas law P = ρkT /µ, where µ is the mean weight of the atmospheric gas. 



Problem 9 

The equation of radiative transport in a star is: 

dT 3κρL 
= − 

dr 64πσT 3r2 

where T, L, and ρ are the stellar temperature, luminosity, and mass density, all of which are 
functions of the radial distance, r. The quantity κ is the “opacity” of the stellar material 
which you may take to be a constant, κ0. The quantity σ is the Stefan-Boltzmann constant. 
Use a dimensional analysis of this equation to find how the luminosity of a star depends 
on its mass, M , and constants of nature. You may use the result derived in lecture that 
an average temperature in the stellar interior is given by T � GM µ/(kR), where R is the 
stellar radius, µ is the mean mass of a gas particle, and k is Boltzmann’s constant. 



Problem 10 

The following nuclear reaction takes place in the Sun as part of the CNO cycle: 

6C
12 

→ 7N
13+ 1H

1 + γ 

The atomic mass excesses of 6C
12 , 1H

1, and 7N
13 are 0.00 MeV, 7.29 MeV, and 5.34 MeV,


respectively. How much energy is given off in this reaction?

Write down one of the nuclear reactions from the main p − p chain which provides most of

the energy input to the Sun.



