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1.	 Do any 6 of the first 8 problems ­ indicate which of these you want graded. 
2.	 Do problems 9 and 10. 
3.	 Each numbered problem (i.e., #1–#10) is worth 13 points. 
4.	 Closed book exam; you may use two pages of notes. 
5.	 Wherever possible, try to solve the problems using general analytic 

expressions. Plug in numbers only as a last step. 
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APPROXIMATE VALUES OF USEFUL CONSTANTS


Constant cgs units mks units 

c (speed of light) 
G (gravitation constant) 
k (Boltzmann’s constant) 
h (Planck’s constant) 
mproton 

eV (electron Volt) 
M� (solar mass) 
L� (solar luminosity) 
R� (solar radius) 
σ (Stefan­Boltzmann cons) 
Å(Angstrom) 

3 × 1010 

7 × 10−8 

1.4 × 10−16 

6.6 × 10−27 

1.6 × 10−24 

1.6 × 10−12 

2 × 1033 

4 × 1033 

7 × 1010 

6 × 10−5 

10−8 

cm/sec 
dyne­cm2/g2 

erg/K 
erg­sec 
g 
erg 
g 
erg/sec 
cm 
erg/cm2­sec­K4 

cm 

3 × 108 

7 × 10−11 

1.4 × 10−23 

6.6 × 10−34 

1.6 × 10−27 

1.6 × 10−19 

2 × 1030 

4 × 1026 

7 × 108 

6 × 10−8 

10−10 

m/sec 
N­m2/kg2 

J/K 
J­sec 
kg 
J 
kg 
J/sec 
m 
J/m2­sec­K4 

m 
km (kilometer) 105 cm 103 m 
pc (parsec) 
kpc (kiloparsec) 
Mpc (megaparsec) 
year 
day 

3 × 1018 

3 × 1021 

3 × 1024 

3 × 107 

86400 

cm 
cm 
cm 
sec 
sec 

3 × 1016 

3 × 1019 

3 × 1022 

3 × 107 

86400 

m 
m 
m 
sec 
sec 

AU 
1� (arc minute) 
1�� (arc second) 

1.5 × 1013 

2.9 × 10−4 

4.9 × 10−6 

cm 
rad 
rad 

1.5 × 1011 

2.9 × 10−4 

4.9 × 10−6 

m 
rad 
rad 



Problem 1 (Binary Orbit) 

The orbit of the first accretion­powered millisecond X­ray pulsar was measured here at M.I.T. 
using data from the Rossi X­Ray Timing Explorer Satellite. The Doppler delay curve for 
the motion of the neutron star is given in the figure below. The amplitude of the sine curve 
indicates the projected light travel time across the orbit of the neutron star around the center 
of mass of the binary. 

(a) Use the figure to estimate the value of ans sin(i) for this system, where i is the orbital 
inclination angle. Express your answer in cm or m. 

(b) Assume that the neutron star has a mass of Mns = 1.4 M� and that the orbital inclination 
is i = 30◦. The orbital period of the binary is Porb = 2 hours. Compute the mass of the 
companion star, mc. Hint: in order to solve for mc you will have to make the approximation 
that mc/Mns � 1 and, equivalently, Mns/mc � 1. 



Problem 2 (Planetary Atmosphere) 

A planet of radius, R, and mass, M , has a very hot atmosphere that extends out to several 
times the planet’s radius. However, the amount of mass contained in the atmosphere is 
completely negligible compared to the mass of the planet, i.e., gravity is determined entirely 
by the planet. Note: gravity is not a constant in this problem! 

(a) Write down the equation of hydrostatic equilibrium in a form relevant to describing the 
atmosphere in this problem. 

(b) Assume that the temperature of the planet’s atmosphere is a constant, T0, independent 
of height above the surface. Further assume that the atmospheric gas, consisting of atoms 
of mass, m, acts as an ideal gas. Solve the equation of hydrostatic equilibrium to find the 
density, ρ(r) as a function of radial distance, r from the center of the planet. Your answer 
should be in terms of the density, ρ0(R), at the surface of the planet. 



� 

Problem 3 (Nuclear Burning) 

A horizontal branch star has radius, Rstar, and photospheric temperature, Te = 7000 K. The 
stellar luminosity is 40 L�. The mass and radius of the He­burning core are Rcore = 0.07 R
and Mcore = 0.5 M�, respectively. 

(a) Compute the overall radius of the horizontal branch star, Rstar. 

(b) The expression for the nuclear energy generation rate per gram for the triple alpha 
reaction is: 

e−4295/T6E3α(ρ, T ) � 4 × 1011ρ2 ergs gm−1 sec−1 , 

where ρ is the density in the core (in grams cm−3) and T6 is the core temperature in units 
of 106 K. If you wish to use mks units: 

e−4295/T6E3α(ρ, T ) � 40ρ2 Watts kg−1 , 

where ρ is expressed in kg m−3 . Take both the density and temperature in the core to be 
constant throughout the core. Compute the density, ρ, and temperature, T , in the core. 



Problem 4 (Accretion Disk) 

Matter from a companion star flows through the L1 point of the Roche lobe and spills into the 
accretion disk of a compact accreting star (e.g., a neutron star). The situation is illustrated 
in the sketch below (taken from APOD). 

(a) A parcel of matter of mass, Δm, makes it through the accretion disk from a very large 
outer radius (taken to be infinity) to a radius, R, from the compact star. If the mass of 
the compact star is M , compute the decrease in potential energy of the parcel. Ignore the 
gravity of the companion star (shown in the lower left corner of the figure). 

˙(b) If mass passes through the disk at radius, R, at a rate m = Δm/Δt, compute the 
luminosity, L that must have been released in the disk for all radii > R. 

(c) Use the result of part (b) to compute the amount of luminosity, ΔL, released in an 
annulus of the disk between R and R + ΔR. 

(d) Assume that all of the released potential energy is radiated by the accretion disk as 
black­body radiation. The disk has a surface temperature, T (R), which depends on the 
radial distance from the central compact accretor. Equate the power radiated by the disk in 
black­body radiation, in an annulus between R and R + ΔR, to ΔL found above in part (c) 
due to the potential energy decrease of the matter moving through the disk. Find T (R) in 
terms of quantities specified in the problem and fundamental constants. 



Problem 5 (Short Answers) 

(a) Suppose that an interstellar cloud of mass, M , and radius, R, undergoes essentially 
free­fall collapse in the initial stage of star formation. Assume that the cloud is spherically 
symmetric in its density structure. Write down the equation of motion for a test mass at 
the outer boundary of this cloud that essentially describes the free­fall collapse. Solve for 
the collapse time by using a dimensional analysis, and evaluate this time in units of years if 
M = 100 M� and R = 10 pc. 

(b) Use the Virial Theorem to estimate the mean internal temperature, T , of the Sun. 
Useful relation: 1/2m �v2� = 3/2 kT , where m is the mass of a gas atom, v is its speed, k is 
Boltzmann’s constant, and T is the temperature of the gas. For purposes of this problem, 
assume that the Sun is made entirely of hydrogen. Give your answer in degrees K. 



Problem 6 (21­cm Line of Hydrogen) 

The 21­cm line of hydrogen is observed from a distant galaxy. The galaxy is not resolved, i.e., 
the 21­cm radiation from the entire galaxy is detected in a single receiver. The rest­frame 
frequency of the 21­cm line is 1420.4 MHz. The radio observations of this particular galaxy 
show a broadened line centered at 1390 MHz and having a width of ±1.5 MHz. 

(a) What would you infer about the distance to this galaxy? 

(b) What approximate rotation speed would you infer? 



Problem 7 (Galaxy Rotation Curve)


A spiral galaxy resides in a dark matter halo of density:


ρ0
ρ(r) = � � � � 

r 1 + r 
r0 r0 

where ρ0 is a constant with the dimensions of density, r is the radial distance from the galaxy 
center, and r0 is a scale length of the problem (also a constant). For purposes of this problem 
assume that the mass in visible stars, i.e., the spiral galaxy, is negligible compared with the 
dark matter. 

Starting from F = ma, find the rotation curve, i.e., v(r), for stars in this galaxy. Assume 
simple circular motion for the stars. Express your answer in terms of radial distance from the 
galaxy center, r, the two parameters of the problem, ρ0 and r0, and fundamental constants. 

Possibly useful integrals: � � � � � 
dx dx x xdx 

(1 + x) 
= ln(x) ; 

x(1 + x) 
= ln 

1 + x 
; 

(1 + x) 
= x − ln(1 + x) 



Problem 8 (Supernovae)


Compare the energy released, E , in a Type II supernova with that of a Type Ia supernova.


(a) For the case of a Type II supernova consider the gravitational potential energy released 
when the degenerate core (of Fe) exceeds the Chandrasekhar limit and collapses from white 
dwarf dimensions to form a neutron star. Adopt some plausible values for the radii of white 
dwarfs and neutron stars. Compute EII . 

(b) For the case of a Type Ia supernova suppose for simplicity that this is triggered when 
a white dwarf made of carbon exceeds the Chandrasekhar limit, burns to Fe, and explodes. 
The atomic mass excesses of these two nuclei are 0.0 MeV for 6C12 and −60 MeV for 26Fe56 . 
Compute EIa. 

(c) In fact, Type II supernovae are actually less luminous than Type Ia’s. Can you 
suggest why this might be true in spite of your results in part (a) and part (b)? 



Problem 9 (Quasar Luminosity) 

The figure below shows the spectrum of a quasar discovered with the Sloan Digital Sky 
Survey. Two of the prominent emission lines are due to Hβ and MgII whose rest wavelengths 

A and 2798 ˚are 4861 ˚ A, respectively. The bolometric flux from this quasar is F = 10−12 ergs 
cm−2 sec−1 (or, F = 10−15 Watts m−2). 

(a) Compute the z of this quasar (or equivalently the Doppler shift). Use this information 
and your choice of Hubble constant to compute the distance to the object. (You may use 
the simple linear relation between z and distance even though z for this object is a bit too 
large for this to be quite right.) 

(b) Find the luminosity of this quasar. 

(c) If the quasar is powered by a 107 M� black hole, estimate the accretion rate required to 
produce the observed luminosity. If you are unable to do parts (a) or (b) simply assume that 
the luminosity of the quasar is 1013 times the luminosity of the Sun (not necessarily meant 
to be the correct value). 



Problem 10 (Cosmic Evolution)


The equation governing the evolution of the “scale factor” of the universe is given by:


ȧ2 = H0
2 [(1 − ΩM ) + ΩM /a] , 

if we neglect the effects of radiation and “dark energy”. Here, ΩM is the ratio of the current 
matter density to the critical density. 

(a) For the case where ΩM = 1, solve for the scale factor as a function of time. Leave H0 in 
symbolic form. Factors of order unity do count. 

(b) Again for the case where ΩM = 1, find the age of the universe when light was emitted 
that we now observe to have a redshift z, i.e., the t(z) relation. 

(c) If the cosmic microwave background (currently with T = 2.72 K) was formed when the 
universe had a temperature of 3000 K, use the result of part (a) or part (b) to find the age 
of the universe (in years) when the CMB was formed. Take H0 = 70 km sec−1 Mpc−1 . 


