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8.13 Statistics Assignment

Teaching Staff*
MIT Department of Physics
(Dated: September 10, 2007)

Types of errors, parent and sample distributions. Error propagation. Due September 17,18 - 2007

1. READING

e Bevington & Robinson Chapters 1-4.2

e Helpful: J. R. Taylor “An Introduction to Error
Analysis”

2. SUMMARY/OVERVIEW:

When quoting your results in Junior Lab, you
are expectred to give a solid statistical error and
an estimate of the systematic error. Note: statis-
tical errors come solely from REPEATED, inde-
pendent, measurements.

Errors are not mistakes but uncertainties in measure-
ments:

a) Random Errors, o - jitter of measurements around
the true value, p.

b) Systematic Errors, A - deviation from truth by
faulty knowledge/equipment.

If we make N measurements x1,Zs,...xn and quote
the result

Lresult = Thest + Sz + Az (1)

then usually:

1
Tpest = (x) = NZJEZ mean (2)
1 2
Sy = ﬁZ(xi—@}) std. dev. (3)
Az = estimate of unmeasured ‘systematic’ effect{4)

If z; came from a parent or population distribution
with probability density p(x), the population mean u =
limy oo (7) and variance 62 = limy_o $2.

Note: ((z — (x))2) = (%) — (2)2.

Some common parent distributions are:

a) Gaussian:
1

p(z) = 2m6*%( =)

(®)
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b) Poisson:

xT
pla) = Ly

' with variance o = \/p. (6)
x!

¢) Lorentian:

1 T/2
) = e+

FWHM : |z —p| = £T'/2
(7)

In general, these distributions govern experiments
with: a) high statistics (@ > 20), b) low statistics
(1 < 20) and c) distributions of photons with line width
T =h/E.

3. ERROR ANALYSIS

Counting Experiments:
Result = (N +v/N) for distributions (5) and (6).

Continuous Experiments:

Result = T'+or (temperature T;, voltage, etc...) T;
are most likely Gaussian distributed, if your mea-
surements are independent (i.e. the measurements
are uncorrelated and do not depend on each other).
The variance ¢ you obtain from fitting a Gaussian
to your distribution of values depends, for example,
on the coarseness of the scale of your thermometer,
etc.

3.1. Error Propagation

You determine the height x of a building by letting a
stone drop and measuring the time ¢ with a watch.

r=—gt? —

5 x={(x)to,

From your watch accuracy, o;, you want to know the
error in x, o,. Then in this example:

Oz Ot ox —Utt—QJt
c z\at) VT

In general, if we evaluate z(w) from a measured w with
o, then

with o = /N for counting experiments
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and for more parameters wi, wa, . .. Wp:

3 (0 fw) )

i=1

2 2
& Ow1 Tw2
x wi  wd’

i.e. fractional errors add in quadrature.

Having made N measurements we quote our best (max-
imum likelihood) values as:
Distribution Mean

1 z;/0;)?
() = D @i~ p :ZZ:((l//ai)L (10)

Distribution Uncertainty

_ Oone measwrement _ | N Sz — (2))2/0?
T VN a \/; \/ S (1/07)
(11)

where the first value is for N measurements of equal
error and the second is for the case of combining mea-
surements of different o; by error weighting.

4. PROBLEMS

1. Bevington & Robinson (2003) exercise 2.16

2. Observed over a long tme, cars pass a road at a rate
of 5in 10 minutes. (A) What is the probability that
no car passes between 10 and 10:05 am? (B) What
is the probability that no car passes between 10 and
10:05 am on three consecutive days? (C) What
is the probability that > 4 cars pass between 10
and 10:05 am? (D) How would you prove that the
”passings” are independent? Describe a condition
where they are not independent.

3. Bevington & Robinson (2003) exercise 3.2





