
MIT OpenCourseWare 
http://ocw.mit.edu 

8.13-14 Experimental Physics I & II "Junior Lab"
Fall 2007 - Spring 2008 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms


Using Matlab for Curve Fitting in Junior Lab 

MIT Department of Physics 
Advanced Experimental Physics I & II 

(Dated: June 13, 2008) 

1. INTRODUCTION 

Curve fitting is one of the most common analytical 
tasks you will perform during Junior Lab. Students are 
welcome to utilize any set of routines for curve fitting as 
long as the standards for reporting results, identified in 
this and other Junior Lab documents, are met. 

This short guide is designed to get you started us­
ing Matlab, a commercial product available on the Win-
Athena computer cluster in Junior Lab. Matlab is free 
for MIT students wishing to run it on their own 
computers; see web.mit.edu/matlab/www and is also 
available on any Athena workstation at the Insti­
tute. 1 

2. STARTING MATLAB 

1. From the Athena prompt, attach the Matlab locker 
(you can also add this to you .cshrc.mine file to have 
it automatically attached at login): 

% add matlab 

2. Open Matlab into a new window: 

% matlab & 

Once it has finished loading, it will present you with the 
Matlab prompt: >>. From this prompt you can execute 
any of the Matlab commands or run a Matlab script. To 
run a script, first make sure it ends in .m and resides in 
your matlab directory and then simply type the name at 
the prompt (without the .m): 

>> myscript 

3. USING MATLAB SCRIPTS 

One very powerful yet simple way to utilize Matlab is 
to use scripts. Scripts are simply text files that contain a 

1	 While Matlab is the default Junior Lab solution, some students 
prefer to use alternative mathematics packages (e.g. Gnuplot, 
Maple, Mathematica or LabVIEW). The only requirement is a 
solid understanding of the underlying algorithm and mathemat­
ics, detailed in many places, most notably Bevington and Robin­
son (2003), Reference [1]. It is a good idea to have this reference 
at your side while doing data analysis as you will be continually 
referring to it throughout your work! 

series of Matlab commands. The entire process of curve 
fitting will require at least a handful of commands so it 
is useful to have them all in a single script. Once you 
have this script you can return to it later, repeat your 
fit, make modifications, etc. without having to retype all 
of the commands. 

If you plan to use Matlab scripts, it’s a good idea to 
create a ‘matlab’ directory in your home directory. You 
can do this by typing: 

% cd ~; mkdir matlab 

You should save any Matlab scripts that you write in this 
directory. You can use emacs (or any other text editor) 
to create and edit Matlab scripts. For example, to create 
a new script called myscript.m type: 

% >> edit myscript.m 

Notice the “.m” extension on the script. All Matlab 
scripts must end in “.m” in order to execute correctly. 
The edit command opens up a text editor within Mat-
lab. 

4. JLAB FITTING TEMPLATE 

To accommodate quick and easy fitting for Matlab 
beginners, we have created a script that you can use 
as a template for fitting. This script is available from 
the Matlab section of the Junior Lab website. You 
should start by downloading all of the Matlab ‘.m’ files 
at http://web.mit.edu/8.13/www/jlmatlab.shtml to 
a newly created directory on your Athena lockers. 

Before examining the script in detail, try simply run­
ning it by typing (within Matlab): 

>> fittemplate08 

This script performs the nonlinear fit and produces a 
publication quality graphic, already for use within a Ju­
nior Lab written summary or in an oral exam presenta­
tion!!! As you can see, a Matlab scripts are is a very 
powerful tool with which you will want to become very 
familiar! By encapsulating all the pertinent information 
into a ‘script’ it is very easy to return at a later date to 
recreate the fit or to apply the same script to a new data 
set. It is a good idea to get into the habit of adding com­
ments to each new script and to use ‘intuitive’ naming 
schemes for your filenames. 

The basic procedure for using this fitting script is out­
lined as follows: 

http://web.mit.edu/8.13/www/jlmatlab.shtml


2 

1. Open the script in Matlab using the ‘edit’ com­
mand. 

2. Modify the script such that it: 

(a) Loads data from an arbitrary space delimited 
file into the vectors x and y 

(b) Assigns the appropriate errors (this is the hard 
part!) 

(c) Contains the functional form that you want 
to fit (consider adding baseline terms for real 
data containing noise and insrumental offsets!) 

(d) Plots figures with labels appropriate for your 
data 

3. Save the file with a new name, keeping the .m ex­
tension 

4. Run the script! 

5. Matlab will fit your data, output the information 
relevant to the fit, and plot (1) the fitted curve on 
top of the original data and (2) the residuals. 

We will now go through this process in detail. 

4.1. Non-Linear Least Squares Example 

In developing this guide, we have used the 
Statistics Reference Dataset “Gauss3” available from 
the National Institute of Standards in Technol­
ogy at http://www.itl.nist.gov/div898/strd/nls/ 
data/gauss3.shtml. Since NIST has kindly provided 
certified values for this dataset, it is an excellent test case 
for checking the acceptability of alternative data fitting 
products. You should always test your fitting algorithms 
on a certified data set to test it’s accuracy before apply­
ing it to your own Junior Lab data! 

The sample dataset, entitled “gauss3.dat” (down­
loaded previously from the Matlab section of the Junior 
Lab web page), consists of two poorly resolved Gaussian 
peaks on a decaying exponential background and must 
be fit using using a general (nonlinear) custom model. It 
has normally distributed zero-mean noise with a variance 
of 6.25. 

Here we step through the process of modifying the tem­
plate script to fit this ‘known’ dataset. Note also that the 
any and all parts of the “template script” may be entered 
directly from the matlab command line. This is useful 
when diagnosing script generated errors. 

1. Open the script in the Matlab editor window 

% >> edit fittemplate08.m 

2. Modify the script such that it: 

(a) Loads data from your file into the vectors x 
and y. 

Currently the script is set up to load the simulated 
data file called ‘gauss3.dat’ described earlier. It can be 
changed to load whatever dataset name you require: 

load gauss3; 

The result of a load command on a tab-delimited text 
file is a single “matrix” variable with the name gauss3 
(250 rows x 2 col). The next lines in the script assign 
values to the x and y vectors from this parent matrix. 

x=gauss3(:,1); 
y=gauss3(:,2); 

(Note that this syntax utilizes the entire data set in 

the vector definitions. By placing indices on either 

side of the colon, a subset of the entire data file may 

be selected for fitting.) 

(b) Assigns the appropriate errors 
You will want to create a vector of error values. 

While the error values may or may not be uniform, 
the error vector must be the same size (length) as the 
vectors x and y. 

In the case of gauss3, we have a constant variance 
of 6.25 so we can assign the weights with the com­
mands: 

sig=ones(size(x))*sqrt(6.25); 

which creates a weighting vector of the same size as 
the vector x with a constant value of one over 2.5. 
See Reference [1] for more information on weighting 
vectors. 

Note: Since there are several different ways you 

could assign values to the error vector sig, the script 

includes several different assignment statements that 

cover a few cases. Once you have chosen one and mod­

ified it for the fit you are doing, you will need to com­

ment out the other lines that assign values to sigma. 

To comment something out, simply put a ‘%’ in front 

of it. LATEX regards any thing following a ‘%’ as a com­

ment and does not interpret it. You’ll notice that the 

template is heavily commented to explain what the 

commands are doing. 

(c) Contains the functional form that you want to 
fit 

The two general classes of functions that you will 
fit in Junior Lab are simple straight lines that can be 
solved in closed form and arbitrary functions which 
must be solved iteratively. The template script in­
vokes the functions fitlin.m and levmar.m for these 
two cases respectively. Each of these cases is handled 
slightly differently within the fitting template. We will 
discuss each separately. 

Arbitrary Functions 

When fitting an arbitrary non-linear function (e.g. 
a gaussian or exponential function), you will need to 
specify the following: 

• The x and y vectors of your data, 

•	 A vector sig containing the uncertainties of each 
data point, 

• The functional form you want to fit to the data, 

• An vector with an initial guess of the parameters. 

http://www.itl.nist.gov/div898/strd/nls/


3 

The function levmar.m performs the fit by iter­
atively searching for the minimum value of the Chi-
Square (χ2) using the Marquardt algorithm detailed in 
Bevington and Robinson (2003). Each iteration varies 
the parameter by a certain stepsize to determine the 
minimum to within a certain tolerance (the variable 
‘chicut’ in the matlab script). Thus, your fit is more 
likely to be fast and accurate with a carefully chosen 
set of initial parameters. Additionally, being able to 
estimate parameters quickly from graphs of data is an 
important skill that will serve you well. 

It is also possible for such a fitting process to con­
verge on a local minimum in χ2 space that does not 
represent the best fit. If this is happening to you, you 
can modify both the ‘stepsize’ and the tolerance ‘chi-
cut’ used by levmar.m. Both of these parameters are 
labeled within the function. 

Straight Lines 

When fitting a straight line, simply comment out 

the line that specifies the starting parameters a0 and 

the line that calls levmar within the script. Then, 

simply uncomment the line that calls fitlin. Notice 

that for a straight-line fit, you only need to specify 

the x and y vectors of your data and the sig vector 

containing the error values. You do not need to specify 

starting parameters. 

(d) Plots figures with labels appropriate for your 
data 

Running the script will automatically generate 
plots for you. You’ll need to make sure these graphs 
display the data you want with the correct labels. 

Currently the script will generate one figure that 
is split into two sections. The top section will contain 
the fitted curve plotted on top of your data points 
with errorbars. The bottom section will contain the 
residuals of your fit. 

The commands ‘title’, ‘xlabel’, and ‘ylabel’ 

label the title, x axis and y-axis of the graph respec­

tively. Right now the script just gives them generic 

titles. Make sure to modify these lines to give your 

graph meaningful labels with units. 

3. Save the file with a new name, keeping the 
.m extension. 
Be sure to save it with a different filename so that 
the template script will be left intact for your next 
fitting adventure. 

4. Open Matlab and run the script. 
If the script is saved in your matlab directory, you 
should be able to run it simply by typing in the 
name at the Matlab prompt (without the the .m). 
You may need to change directories if the file is 
stored elsewhere. Matlab has the same directory 
navigation commands as Athena such as ‘ls’, 
‘cd’, ‘pwd’, etc. 

5. Matlab will fit your data, output the infor­
mation relevant to the fit, and plot (1) the 
fitted curve on top of the original data and 
(2) the residuals. 

The script is currently setup to output the values de­
termined for the coefficients and their errors as well as the 
reduced chi-square2 (χ2 

ν−1) of the fit. The script causes 
these particular values to be output because they are de­
clared with no semi-colon. In general, a semi-colon at 
the end of a Matlab command suppresses the output of 
the command. 

5. GENERATING PRESENTATION GRAPHICS 

Figure 1 demonstrates a typical graphic you might cre­
ate for an oral presentation or written summary. The 

FIG. 1: This is an example of a basic figure for Junior 
Lab notebooks, presentations and written summaries. You 
should check with your individual section instructor 
for explicit instructions on how to prepare figures for 
presentation within your section. 

fitting template script is already configured to generate 
graphs of your data, the fitted curve and the residuals. 
However, as previously mentioned you will need to cus­
tomize the titles and axis labels so they are relevant and 
meaningful to your graph. In addition, you may also wish 
to annotate your graph with additional information. The 
JLAB Fitting Template has several examples of 
how to automatically place properly formatted fit 
results within a plot. You can do this graphically with 
the tools provided in the graph window or by using the 
‘text’ command within the script. To use the ‘text’ 
command you simply specify x and y coordinates and 
the string you wish to appear. The coordinates should 
be in the same units of the graph to which they refer. 
For example: 

text(18,5,’y(x) = ae^{-bx}+a_1e^{-((x-b_1)/ 

2	 This is simply the χ2 (a statistic used frequently by physicists 
and in Bevington) divided by the DFE (Error Degrees of Free­
dom). The DFE is equal to the number of data points minus the 
number of fitted coefficients. 



4 

c_1)^2}+a_2e^{-((x-b_2)/c_2)^2}) 

would provide an appropriate label for the gauss3 graph 
in the lower left-hand corner. Notice also that Matlab can 
interpret latex formatting to display Greek characters, 
superscripts, and subscripts. 

When you have your graphs just the way you (and 
your section instructor!) want them (a completed graph 
might look like Figure 1) , you can output them for use 
in your lab notebooks, written summaries, and oral pre­
sentations. If you simply want printouts of your graphs 
for your notebooks, select ‘Print...’ from the ‘File’ 
menu and make sure the correct printer is specified. 

You should save your graphic in Portable Document 
Format (PDF) for easy inclusion into LATEX generated 

[1] Bevington,	 P.R., and D.K. Robinson, Data Reduc­
tion and Error Analysis for the Physical Sciences, 3rd 
Ed.,WCB/McGraw-Hill, Boston, 2003 

[2] Levenberg, K., “A Method for the Solution of Certain 
Problems in Least Squares”, Quart. Appl. Math, Vol. 2, 
pp. 164-168, 1944 

[3] Marquardt, D., “An algorithm for Least Squares	 Esti­
mation of Nonlinear Parameters”, SIAM J. Appl. Math, 
Vol. 11, pp. 431-441, 1963 

[4] Branch, M.A., T.F. Coleman, and Y. Li, “A Subspace, 
Interior, and Conjugate Gradient Method for Large-Scale 
Bound-Constrained Minimization Problems”, SIAM 
Journal on Scientific Computing, Vol. 21, Number 1, pp. 
1-23, 1999 

[5] Hecht, E., Optics: 4th Edition,Addison-Wesley, 2002 
[6] Kittel, C., and Kroemer, H., Thermal Physics, 2nd Ed., 

W.H. Freeman, 1980 

reports and oral presentations. Be sure to scale your 
text appropriately for the desired medium (fonts should 
be much larger for oral presentation slides). 

6.	 GETTING STARTED WITH MATLAB AT 
MIT 

Exhaustive details about running Matlab can be found 
at: web.mit.edu/matlab/www including a several intro­
ductory guides and a free (certificates based) on-line tuto­
rial. Beyond these, perhaps your best resource is simply 
to talk to friends and classmates; many of them have a 
great deal of Matlab experience! 




