
MIT OpenCourseWare
http://ocw.mit.edu

8.13-14 Experimental Physics I & II "Junior Lab"
Fall 2007 - Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

� �

Quantum Information Processing with NMR

MIT Department of Physics
(Dated: April 10, 2008)

This experiment will let you perform a series of simple quantum computations on a two spin
system, demonstrating one and two quantum-bit quantum logic gates, and a circuit implementing
the Deutsch-Jozsa quantum algorithm. You will use NMR techniques and manipulate the state of a
proton and a carbon nucleus in a chloroform molecule, measuring ensemble nuclear magnetization.
WARNING: you should know Matlab well to successfully do this experiment! You will measure: (1)
the coupling constant describing the electron-mediated interaction between the proton and carbon
nuclear spins of chloroform, (2) the classical input-output truth table for a controlled-not gate, (3)
the numerical output of the Deutsch-Jozsa quantum algorithm, and (4) optionally, the output and
oscillatory behavior of the Grover quantum search algorithm.

1.	 PREPARATORY QUESTIONS (up to an irrelevant overall phase). You may find
it helpful to start with the near controlled-not op­

1. The	 NMR spectrum of 13C chloroform has four eration of Eq.(8). You should need no more than

peaks: two proton peaks (centered around ∼ 200 four additional rotations about x̂ and ŷ axes, or
MHz in this experiment) and two carbon peaks just two rotations about ẑ axes to transform the

(around ∼ 50 MHz). If the initial state of the sys- near-cnot to a real cnot. The Matlab script
tem is described by a diagonal density matrix, qipgates.m in the Junior Lab locker on

under matlab/qip, is very helpful for this
problem.

 ⎡
a 0 0 0
0 b 0 0

⎤

ρ = ⎢⎣
⎥⎦ (1) 4. Consider the four possible (classical) functions

which have one bit as input and one bit as output.
0 0 c 0
0 0 0 d

(where the states are 00, 01, 10, and 11, with proton
on left and carbon on right) then after a Rx(π/2)
readout pulse, the integrals of the two proton peaks
(in the proton frequency spectrum) are given by
a − c and b − d, and the integrals of the two carbon
peaks are given by a − b and c − d. The spectrum
is the fourier transform of the free induction decay
signal, Eq.(22), for a given spin state ρ; see the
Appendix for a detailed derivation. (a) Sketch the
spectra you expect for the four cases when only
one of a, b, c, and d is nonzero. (b) What peak
integrals do you expect for ρ = ρtherm, the thermal
state of Eq.(26)? (c) What are the spectra if ρ is
a cnot gate applied to the thermal state, that is
ρ = UcnρthermU † ? How about the near-cnot?cn

2. Explicitly compute

• State the function fk(x) for each of these func­
tions (k from 1 to 4). Sketch a classical cir­
cuit which implements each of these functions.
Sketch a quantum circuit which implements
each of these functions using rotation opera­
tions and CNOT gates (the quantum circuit
will consist of two qubits, an input ‘x’ and an
output ‘y’, such that ‘x’ remains unchanged
by the circuit and ‘y’ encodes the function
fk(x) ⊕ y). Particularly useful references are
[1, 2]

• State the four pulse sequences which im­
plement the above quantum circuits (denote
them as Uf 1, Uf2, Uf 3, and Uf4) comprised of
rotations about x̂ and ŷ axes, and delay times
τ during which free two-qubit evolution occurs
according to Eq.(4).

U = exp i(nxσx + nyσy + nz σz)
• Compute the 4×4 unitary matrices Uk corre­

sponding to the four pulse sequences Uk =
Rȳ2Ry1 Ufk Ry2Rȳ1, for k from 1 to 4.

and show this gives

U = cos(|n|) + i
nxσx + ny

n

σy + nzσz sin(|n|) .
| |

3. Give a sequence of pulses to implement a proper
controlled-not, which has matrix elements of only
one and zero, that is:

5. Compute the one-sided fourier transform (integral
from t = 0 to t = +∞) of ei(ω0t+φ)e−t/T2 and relate
your result to the parameters for the Lorentzian in
Eq.(23).

Suggested schedule

Ucn =

⎡ ⎢⎣

1 0 0 0
0 1 0 0
0 0 0 1

⎤ ⎥⎦ Day 1: Measure ωP , ωC , and J , pulse widths for 90
degree rotations; estimate T1, and T2. Day 2: Implement

0 0 1 0	 near controlled-not gate and full controlled-not gate on

Id: 49.qip.tex,v 1.68 2008/04/10 15:20:47 sewell Exp

the MIT
Server,

2 Id: 49.qip.tex,v 1.68 2008/04/10 15:20:47 sewell Exp

the thermal spectrum, and characterize its peak ampli­
tudes. Day 3: Implement the Deutsch-Jozsa algorithm,
and characterize sources of error. Day 4: (if you have
time) Implement the Grover algorithm.

2. INTRODUCTION

Information always has a physical representation, and
physical systems are governed by Laws of Nature. The
earliest mechanical computers represented their state us­
ing the positions of gears and cogs; these computed by
using Newton’s laws of classical mechanics. Modern elec­
tronic computers store information using the presence or
absence of electronic charge on small semiconductor ca­
pacitors, and use laws of electricity and magnetism to
process information. Quantum computers represent in­
formation using states of quantum systems, and perform
computation by exploiting the laws of quantum physics.
Since quantum mechanics is capable of transformations
which are impossible classically, new feats of computa­
tion are enabled which can speed the solution of some
interesting mathematical problems; this potential was
first foreseen by Richard Feynman, who pointed out in
1982[3] that quantum systems are difficult to simulate
using classical computers. This is because the amount of
information necessary to completely describe a quantum
state grows exponentially in its size; the wavefunction
of an n spin-1/2 particle system is given by about 4n

real numbers. Feynman posed the question: how much
computational power could be obtained by using the dy­
namics of quantum systems to solve classical problems?

Many early questions had to be answered before the
potential for quantum information processing was to be­
come evident. First was the thermodynamic cost of com­
putation: for example, von Neumann believed it was
necessary to dissipate ≈ kB T of energy per elemen­
tary computational step[4]; however, it was then realized
by Landauer[5] that energy dissipation is necessary only
to erase information; in a closed (frictionless) computa­
tional system, there is no energy cost to computation! In
part, von Neumann’s belief came from the fact that gates
such as the logical and are irreversible; Bennett[6] then
showed that all Boolean circuits can be made reversible
with overhead (number of additional gates) only polyno­
mial in the size of the original circuit. A whole field of
reversible computation blossomed from this[7].

These insights brought quantum dynamics into com­
patibility with the idea of computation, since it was
well known that closed quantum systems evolve unitar­
ily, and the microscopic evolution of physical systems is
reversible. Benioff[8] began by expressing classical com­
putation as the dynamical behavior of a quantum sys­
tem, and Feynman introduced various elementary quan­
tum gates[9], but it was not until Deutsch’s article in
1989[10] that a problem was found which could provably
be solved faster than is possible with a classical computer.
Essentially, this was the computation of f(0) + f(1) in

one evaluation of a function f which has a domain and
range of one bit: {0, 1}.
Factoring & Search. Deutsch’s result languished in
relative obscurity until Peter Shor surprised the world
in 1994, with his discovery of a quantum algorithm for
factoring integers[11]. This result extended a quantum
period-finding algorithm by Simon[12] and utilized a
number-theoretic result to turn a period of a certain func­
tion into factors of L-digit integers, using O(L3) quantum
gates, in contrast to the O(2L1/3

) operations required by
the best known classical algorithm. Subsequently, in 1996
Grover[13] discovered a quantum search algorithm which
can be used to speed up a wide range of problems from
requiring O(N) steps to only O(

√
N).

Implementation. Large-scale implementation of these
algorithms remains a significant experimental challenge,
but their basic working principles are now readily demon­
strated using nuclear magnetic resonance (NMR) tech­
niques applied to small multi-spin molecules. This
methodology[1, 2] involves some new averaging tech­
niques to extract a signal as if the spins were initialized to
a zero-temperature state (in reality, they are in a high-
temperature Boltzmann distribution). However, imple­
mentation of single quantum-bit (qubit) and multiple­
qubit logic gates is straightforward, as well as is mea­
surement of the final result. NMR has been successfully
used to demonstrate the Deutsch-Jozsa, Grover, and Shor
quantum algorithms, as well as quantum error correction
and simulation of quantum systems[14, 15].

FIG. 1: Chloroform molecule.

In this lab, you will use a simple two-spin system com­
prised of the hydrogen (proton) and carbon nuclei of 13C
labeled chloroform (Fig. 1) to implement a series of quan­
tum logic gates, beginning with single qubit rotation op­
erations, and a simple quantum addition gate. You will
then use these building blocks to implement the Deutsch-
Jozsa algorithm. Optionally, you may also implement
Grover’s quantum search algorithm and observe its ex­
pected oscillatory behavior.

3.	 THEORY: QUANTUM GATES, CIRCUITS,
AND ALGORITHMS

Digital electronic computers are constructed from el­
ementary building blocks known as logic gates, and the

�

� � � � � �

� �

3

digital quantum computers we study here are similarly
constructed from quantum logic gates. These are noth­
ing more than unitary transforms which act on finite-
dimensional Hilbert spaces. The physical systems are
comprised of numbers of quantum bits, two-level quan­
tum systems, whose states are acted upon by a sequence
of unitary transforms describing a quantum circuit. Fi­
nally, a projective measurement collapses the state, giv­
ing a probabilistic sequence of classical bits as output.
The meaning of this output is dependent on the quantum
algorithm which is instantiated by the circuit. These al­
gorithms solve certain problems faster than is known to
be possible with classical algorithms, because quantum
logic gates provide additional new transforms, impossi­
ble classically.

We quickly tour this theoretical arena beginning with
a description of the basic quantum logic gates, how they
are composed to form circuits which implement two ba­
sic quantum algorithms, and finally how the circuits are
implemented with NMR. More information can be found
in the literature[16].

3.1. Quantum gates and circuits

qubits. A single qubit is a vector |ψ1� = c0|0� + c1|1�
parameterized by two complex numbers satisfying |c0|2 +
|c1|2 = 1. Operations on a qubit must preserve this norm,
and thus are described by 2×2 unitary matrices. Simi­
larly, two-qubit states are described by four-dimensional
vectors ψ2� = c00 00� + c01|01� + c10|10� + c11|11�, sat­
isfying

|
ck

2 =
|

1, and transforms are 4×4 unitary k | | � �

matrices. In vector form, |ψ1� =
c
c
0

1
, and similarly

|ψ2� = [c00c01c10c11]T .
Measurement. When measured in the computational
basis of 0� and |1�, the single qubit state ψ1� produces 0 |

2
|

and 1 with probability |c0| and |c1|2, respectively. The
two-qubit state behaves similarly. Note that the overall
phase of a wavefunction is unmeasurable and has no phys­
ical meaning, so that eiθ|ψ1� is indistinguishable from
|ψ1� for any θ. Thus, a single qubit is often visualized
as a unit vector on a sphere (see the Appendix on Bloch
sphere representations).
Single qubit gates. The Pauli matrices,

σx
0 1

σy ≡
0 −i

σz
1 0 (2)≡ 1 0 i 0 ≡ 0 −1

are important as generators of unitary transforms, and
a good starting point for describing how a physical sys­
tem performs quantum computation is to write down its
Hamiltonian in terms of such matrices. A system with
Hamiltonian H evolves under the Schr¨odinger equation
i�∂t|ψ� = H|ψ�, which has the solution |ψ(t)� = U |ψ(t =
0)�, where U = e−iHt/� is unitary.

Quantum logic gates are realized by turning on and off
terms in a Hamiltonian via an external control mech­
anism. For example, a single qubit may be realized

Id: 49.qip.tex,v 1.68 2008/04/10 15:20:47 sewell Exp

by a two-level spin sitting in a static ẑ-oriented mag­
netic field, described by the Hamiltonian H1 = �ω1σz +
�Px1(t)σx/2 + �Py1(t)σy/2, where Px1(t) and Px2(t) are
classical variables (c-numbers) resulting from externally
controlled magnetic fields about the x̂ and ŷ-axes (see
the Appendix on magnetic resonance).

When Px1 is turned on, while Py1 = 0 (and let us as­
sume for now we can neglect the �ω1 term; this is done
by moving into the rotating frame of the spin), the spin
state transforms under U = e−iPx1tσx/2 . For Px1t = π,
this gives U = e−iπσx/2 = iσx. It is easy to see this trans­
form, known as a π rotation about x̂, is analogous to a
classical not gate, since σx|ψ1� = c1|0� + c0|1�; the prob­
ability amplitudes of 0 and 1 are reversed. We denote
this transform as Rx(π). You will implement such
not gates to prepare inputs from the initial state
00�.|

What happens when Px1t = π/2? This is called a π/2
rotation, and results in the transform

Rx(π/2) = √1
2 −

1
i
−
1
i

, (3)

which has no classical analogue! It might be thought of
as a “square-root” of not, since performing this twice
gives Rx(π/2)Rx(π/2) = Rx(π), which we identified as
a not. Similar rotations occur when Py1 is nonzero. In
general, we can perform rotations Rx(θ) and Ry(θ) for
any value of θ, by controlling Px1 and Py1 appropriately.
Furthermore, by performing appropriate x̂ and ŷ rota­
tions sequentially, we can construct rotations about the
ẑ-axis, Rz (θ).
Two qubit gates. Now consider a two-qubit system
described by the Hamiltonian

H =
�π
Jσ1σ2 +

�Px1(t)
σ1 +

�Py1(t)
σ1

2 z z 2 x 2 y

+
�Px2(t)

σx
2 +

�Py2(t)
σy

2 , (4)
2 2

where the superscripts describe which qubit the operators
act upon, and J is a fixed coupling constant describing
a first-order spin-spin coupling. This kind of coupling is
common in liquid-state NMR systems such as that we
will be working with. As before, the P (t) terms describe
classical controls used to effect single-qubit operations.
We assume that each of the P (t) can be turned on sep­
arately, and with a magnitude such that |P (t)| � J , so
that while any single qubit operation is active, the J-
coupling can be neglected, to very good approximation.
This will be the case in our experiment, and the above
Hamiltonian will describe our system excellently.

How are single qubit operations on a two-qubit system
described mathematically? For example, Rx1 denotes
a π/2 rotation about x̂ on qubit 1 (note that in this
labguide, qubit 1 is the carbon nucleus; also we some­
times write Rx as short for Rx(π/2)). This implies that
we wish to do nothing, i.e. the identity operation, to
qubit 2. To express “do nothing to the second qubit

� � � �

� � � �

�	 � � �

4

and a Rx to the first qubit” we write Rx1 = I ⊗ Rx1,
where ⊗ is the tensor product (or sometimes, Kronecker
product) operator. More about this, and the mathemat­
ics used for composite quantum systems, is described in
the Appendix. With matlab, you can compute the ma­
trix Rx1 = kron(I,Rx). Similarly, σz

1σz
2 is the matrix

σz ⊗ σz .
Consider the sequence of operations Uncn = Rx1 − τ −

Rȳ1, where τ stands for a free evolution period (with all
P (t) = 0) of time 1/2J , and Rx1 and Ry1 are π/2 rota­
tions acting on the first qubit. Note that this sequence
is written with time going left to right, but when multi­
plying unitary transforms the first operator goes on the
right. Using a Dirac ket labeling of |c2c1� (that is, the
first qubit has its label on the right), and writing the
matrix rows and columns in the natural numerical order
of 00, 01, 10, 11 (left to right, and top to bottom), we
obtain

Uncn =	 Rȳ1τRx1 (5)

= I ⊗ Rȳ e−i(π/4)σz ⊗σz I ⊗ Rx (6) ⎡ ⎤ ⎡ ⎤1 1 0 0 −i 0 0 0
1 ⎢−1 1 0 0⎥ 1 ⎢ 0 1 0 0 ⎥ = √
2
⎣ 0 0 1 1⎦ √−i ⎣ 0 0 1 0 ⎦

0 0 −1 1 0 0 0 −i ⎡ ⎤1 −i 0 0

× √1
2
⎣⎢−0

i
0
1

1
0

−
0
i⎦⎥ (7)

0 0 −i 1 ⎡ ⎤ −i 0 0 0
1 ⎢ 0 1 0 0 ⎥ =	 ⎣ 0 0 0 ⎦ . (8)√
−i

0 0 −1
−
0
i

This two-qubit gate is interesting: acting on each of
the four computational basis input states 00�, 01�,
|10�, |11�, we obtain U |00� = −i|00�, U |01

|
� =

|
|01�,

U |10� = −|11�, U |11� = −i|10�. If we denote the in­
put as |xy�, we find that the output from measuring
U |xy� gives the classical bits x� and y� such that x� = x
and y� = x ⊕ y, where ⊕ is binary addition modulo two
(0 ⊕ 0 = 0, 0 ⊕ 1 = 1 ⊕ 0 = 1, 1 ⊕ 1 = 0). This quantum
gate is thus an analog of a classical xor gate. It is possi­
ble to insert further rotations about the ẑ-axes of the two
qubits in order to make all the matrix elements equal to
1; the resulting operation is known as a controlled-not
(or cnot) gate, and the one given above, with non-ideal
phases, is a “near” cnot. You will implement the
quantum controlled-not gate and confirm its clas­
sical input-output truth table.

In drawing these circuits graphically, let the top line
be qubit 1, and the bottom qubit 2, such that an ⊕ on
the bottom line represents R2

x2, that is a π pulse on qubit
2. The vertical line connecting a solid dot with an ⊕ is
a symbol for a cnot gate.

Id: 49.qip.tex,v 1.68 2008/04/10 15:20:47 sewell Exp

3.2. Quantum algorithm: Deutsch-Jozsa

We are now ready to explore the first non-trivial quan­
tum algorithm ever invented, the Deutsch-Jozsa algo­
rithm, and solve the following problem: give a function
f(x) which accepts one bit as input and produces one bit
as output, what is f(0)⊕f(1)? Equivalently: give a coin,
is it a fake (both sides have heads or tails), or fair (heads
one one side, tails on the other)? Clearly, any classical
computer must evaluate the function (look at both sides
of the coin) at least twice to answer this question. On
the other hand, a quantum computer need only evaluate
f once!

Here is how it works. We use two qubits, one to store
the argument x, and the other to store the value of f(x).
In our basis this looks like |x f(x)�. The two qubits
are initialized in the state |ψ0� = |00�. We then per­
form U1 = Ry2(π/2)Rȳ1(π/2) to the state (note that
Rȳ1(π/2) = Ry1(−π/2) is simply a rotation about the
−ŷ axes), obtaining

|ψ1�	 = U� 1|ψ0� � � � (9)

= Ry2(π/2)|0� ⊗ Rȳ1(π/2)|0� (10)

=
|0� + |1� |0� − |1�

(11)√
2

⊗ √
2

1 � �
=

2
|00� − |01� + |10� − |11� . (12)

Now a unitary transform Uf implementing f is applied;
this is defined to give Uf |xy� = |x�|f(x) ⊕ y�. (There are
other ways f could be implemented in such a reversible,
unitary manner, but they are all equivalent for our pur­
poses.) The result is the state |ψ2�,

|ψ2� =	 Uf |ψ1� (13)
1 � �

=
2
|0�|f(0)� − |0�|f(0) ⊕ 1�

� +|1�|f(1)� − |1�|f(1) � ⊕ 1�] (14)
1

=
2

(−1)f (0)|0�(|0� − |1�) . �
+(−1)f(1)|1�(|0� − |1�) (15)

.=
(−1)f(0)|0� + (−1)f(1)|1� |0� − |1�

(16)√
2

⊗ √
2

The simplification from the second to third lines above
occurs because 0 ⊕ 1 = 1, but 1 ⊕ 1 = 0. Note that
the state of the first qubit (the one on the right) re­
mains unchanged. We now apply two final single-qubit
rotations, U2 = Rȳ2(π/2)Ry1(π/2), giving |ψ3�. Recall­
ing that Rȳ(π/2)|0� = (|0� − |1�)/

√
2, and Rȳ(π/2)|1� =

� �

5 Id: 49.qip.tex,v 1.68 2008/04/10 15:20:47 sewell Exp

(|0� + |1�)/
√

2, the proton and carbon spins inside molecules of 13CHCl3.
You are expected to have already completed Experiment

|ψ3� = �
U2|ψ2�

(−1)f(0) 0� + (−1)f(1)
�

(17)#12, Spin Echos / Pulsed NMR, and know the basic
physics of NMR. Below is some additional information

= Rȳ2(π/2)
| √

2

|1� ⊗ |0� (18)specific to this quantum computation experiment. �
(−1)f(0)(1�) + (−1)f(1)(

� Magnetization readout. The principal output of an
=

|0� − |
2

|0� + |1�) ⊗ |0� (19)experiment is the free induction decay (FID) signal V (t)

(−1)f(0) + (−1)f(1)

|0� +
−(−1)f (0) + (−1)f (1)

=
2 2

⊗ |0� .

Note how the first qubit (the one on the right) is left in
its original state, |0�. As for the second qubit (the one on
the left): by inspection, we see that if f(0) = f(1), then
f(0) ⊕ f(1) = 0 and measurement of the second qubit
gives 0; otherwise f(0) ⊕ f(1) = 1, and the measurement
gives 1. This is the desired result.

Summarizing, the two-qubit Deutsch-Jozsa algorithm
can be expressed as the sequence of operations

Rȳ2Ry1 Ufk Ry2Rȳ1 (21)

acting on the initial state |00�, where Ufk implements
the kth of the four possible functions fk(x), and each of
the R’s denotes a π/2 rotation. These functions can be
described by the truth tables

x f1(x) f2(x) f3(x) f4(x)
0
1

0
0

1
1

0
1

1
0

In one evaluation of f , the quantum algorithm distin­
guishes between k = {1, 2} and k = {3, 4}, whereas clas­
sically this would require two evaluations.

The action of this quantum circuit may be understood
as having interfered two computational pathways to ob­
tain the final answer. Indeed, the rotation operations are
like beamsplitters, and the structure of the algorithm is
that of a complex, four-path interferometer. A general­
ization of this structure is used in the quantum factor­
ing algorithm. You will construct quantum circuits
for the four possible functions Uf , implement the
Deutsch-Jozsa algorithm, and observe the mea­
surement result.

3.3. Quantum algorithm: Grover (optional)

In this lab, you may optionally implement the Grover
quantum search algorithm on two qubits. The theory
and implementation procedure for this optional part are
described in the Appendix.

3.4. Implementation with NMR

This experiment utilizes an NMR apparatus which al­
lows complex pulse sequences to be applied simultane­
ously at two different frequencies, to control and observe

for spin k, mathematically given as

|1�
V (t) = −V0tr

�
e−iHtρeiHt(iσk + σy

k)
�
, (22)x

(20)
where σx

k and σy
k operate only on the kth spin, and V0

is a constant factor dependent on coil geometry, qual­
ity factor, and maximum magnetic flux from the sample
volume. This signal originates from the pickup coils de­
tecting the magnetization of the sample in the x̂−ŷ plane.
In the laboratory frame, this signal will oscillate at a fre­
quency equal to the precession frequency ω0 of the nuclei;
however, V (t) is usually mixed down with an oscillator
locked at ω0, then fourier transformed.

Notice how the voltage is complex valued; this is
achieved using a superheterodyne receiver (much like
that employed in the 21-cm Radio Astrophysics MIT Ju­
nior Lab experiment), and allows one to differentiate be­
tween a spin circulating clockwise or counterclockwise.
The voltage signal also decays exponentially, as e−t/T2 ,
so that the fourier transform signal of each spin resonance
line is a complex-valued Lorentzian g(ω),

αΓ
g(ω) = , (23)

i(ω − ω0) + Γ

where ω0 is the center frequency of the line, α = |α|ei arg α

is the (complex-valued) height of the peak, and 2Γ is the
full-width at half-max. You will read out |0� and |1�
states (which are along the ẑ axes) by tipping them into
the x̂ − ŷ plane, such that they are either | + y� or |
states. By convention, the local oscillator reference phase

− y�

is set such that these states correspond to peaks which
are positive, with arg α = 0, or negative, with arg α = π.

For a single (uncoupled) spin, the FID has only a single
frequency. Two coupled spins will produce four frequen­
cies; these occur as two pairs, in this experiment centered
around the proton frequency (≈ 200 MHz) and the car­
bon frequency (≈ 50 MHz). The reason each spin’s line
is split into two is because of the coupling; as schemati­
cally shown in Fig. 2, we can think of what happens as
one spin seeing the magnetic field of the other.

In chloroform, we observe that each line is split by
J ≈ 215 Hz, due to a Fermi-contact interaction mediated
by electrons in the chemical bond between the carbon
and proton. The spectra will appear much like the data
shown in Fig. 3.
The input state preparation problem. (This dis­
cussion requires knowledge of basic density matrices and
statistical mechanics; it is optional (you can do the lab
without fully understanding it) but essential to how the
experiment works.) NMR systems would be ideal for

� �

� �

� �
�

6 Id: 49.qip.tex,v 1.68 2008/04/10 15:20:47 sewell Exp

chloroform molecule, the initial state is approximately ⎤⎡
5 0 0 0 ⎢⎢⎢⎣
0 3 0 0 ⎥⎥⎥⎦ , (26)

I
+ 10−4ρ ≈

4

FIG. 2: Semiclassical explanation for spin-spin coupling,
showing two spins in a strong magnetic field B0. Each spin
produces its own local magnetic field, which is seen by its
neighbor. When spin A is spin-up, its field subtracts from
that seen by B, thus causing it to precess slower. When A is
spin-down, its field adds, causing B to precess faster. A is a

0 0 −3 0
0 0 0 −5

since ωH ≈ 4ωC , by virtue of the approximate factor of
four difference in the gyromagnetic factor for the proton
compared with the carbon.
Initialization solution: temporal labeling. This ex­
periment uses the following technique to extract a signal
from only the |00� initial state; it is based on two im­
portant facts: quantum operations are linear, and the
observables measured in NMR are traceless. Suppose a
two spin system starts out with the density matrix ⎤⎡quantum spin which only has two states. ⎢⎢⎢⎣

a 0 0 0
0 b 0 0
0 0 c 0
0 0 0 d

⎥⎥⎥⎦ , (27)ρ1 =

FIG. 3: Proton (left) and carbon (right) spectra of 13CHCl3,

where a, b, c, and d are arbitrary positive numbers satis­
fying a+b+c+d = 1. We can use a circuit P constructed
from controlled-not gates to obtain a state with the per­
muted populations

, (28)

⎤⎡
a 0 0 0
0 c 0 0 ⎢⎢⎢⎣

⎥⎥⎥⎦ρ2 = Pρ1P † =
0 0 d 0

showing ≈ 215 Hz J coupling. 0 0 0 b

and similarly, ⎡ ⎤
quantum computation if not for one problem which par­ a 0 0 0 ⎢⎢⎢⎣

⎥⎥⎥⎦

ticularly concerns this experiment: NMR is typically ap­
plied to physical systems in equilibrium at room tem­
perature, where the spin energy �ω is much less than

0 d 0 0
. (29)

A unitary quantum computation U is applied to each

ρ3 = P †ρ1P =
0 0 b 0
0 0 0 c

kBT . This means that the initial state of the spins is
nearly completely random. Traditional quantum compu­
tation requires the system be prepared in a pure state of these states, to obtain (in three separate experiments,
(i.e. |00�, as describe above); how can quantum com­
putation be performed with a system which is in a high
entropy mixed state?

which may be performed at different times) Ck = UρkU
†.

By linearity,

Mathematically, we may write the initial state as Ck = UρkU
† (30)

the thermal equilibrium state (note our sign convention k=1,2,3 k

here),
= U ρk U

† (31)
+βH e

(24) kρ = , ⎤⎡ Z 1 0 0 0
0 0 0 0
0 0 0 0

⎥⎥⎥⎦

⎢⎢⎢⎣
where β = 1/kBT , and Z = tr e+βH is the usual partition
function normalization, which ensures that tr(ρ) = 1.

= (4a − 1)U U†

Since β ≈ 10−4 at modest fields for typical nuclei at
room temperature, the high temperature approximation

0 0 0 0 ⎤⎡

ρ ≈ 2−n 1 + βH (25) + (1 − a)
⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0

⎥⎥⎥⎦
. (32)

is appropriate, for a system of n spins. For the two-spin 0 0 0 1

� �
� �

� �

7 Id: 49.qip.tex,v 1.68 2008/04/10 15:20:47 sewell Exp

In NMR, observables M (such as Pauli σx and σy) for
which tr(M) = 0 are the only ones ever measured; thus,

k⎛

FIG. 4: An overview of the Bruker acquisition system.

picked up by the NMR probe and used in a active feed-
back loop to stabilize the axial magnetic field from drift.

tr CkM = tr (LCkM) (33)
k ⎞⎤⎡

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎜⎜⎜⎝

⎢⎢⎢⎣

⎥⎥⎥⎦

⎟⎟⎟⎠= (4a − 1) tr U† M (34)U

= (4a − 1) tr U |00��00|U† . (35)

We find that the sum of the measured signals from the
three experiments gives us a result which is proportional
to what we would have obtained had the original system
been prepared in a pure state |00��00| instead of in the
arbitrary state of Eq.(27).

States which are of the form ρ = 2−n(1 − �)I +
�U |00 . . . 0��00 . . . 0|U† (where U is any unitary opera­
tor), are called ‘effective pure states’, or ‘pseudopure’
states[14]. There are many strategies for preparing such
states, and in general they all incur some cost. Effective
pure states make it possible to observe zero temperature
dynamics from a system which equilibrates to a high tem­
perature state, as long as the coupling of the system to its
high temperature environment is sufficiently small. This
is the way it is used in NMR quantum computation.

4. EXPERIMENTAL APPARATUS

The experimental apparatus consists of a specially pre­
pared chemical sample containing 13CHCl3, a NMR spec­
trometer, and a control computer. A schematic of the
Bruker acquisition system is shown in Figure 4.

You will be using a special Bruker Avance 200 NMR
spectrometer located in Junior Lab for this experiment.
It is primarily controlled by a Linux work-station run ­
ning Bruker’s xwin-nmr; you will interact with the sp ­
ectrometer through workstation next to
it,

which speaks to xwin-nmr over the network, using

matlab as your interface. Your main task is to design
and implement sequences of pulses (a “pulse program”)
for the quantum circuits and algorithms described above.
You will acquire data, compare with theoretical expecta­
tions, and explain likely sources of error and how they
could be dealt with.

4.1. Sample

The 7% by weight 13CHCl3 sample is prepared in a
flame-sealed 5mm glass tube (Fig. 5) and mounted in
a special “spinner” which allows the tube to be rapidly
spun to average away transverse inhomogeneities in the
B0 axial field. The solvent is d6-acetone; the deuterium
in the solvent is used to produce a lock signal which is

FIG. 5: Picture of a typical NMR sample in a spinner.

4.2. NMR Spectrometer hardware

The spectrometer is constructed from radiofrequency
(RF) electronics and a large superconducting magnet
with a proton NMR frequency at about 200 MHz, within
the bore of which is held the sample in a glass tube, as
shown in Figure 6. There, the static ẑ oriented magnetic
field B0 is carefully trimmed to be uniform over approxi­
mately 1 cm3 to better than one part in 109. Orthogonal
saddle coils lying in the transverse plane allow small, os­
cillating magnetic fields to be applied along the x̂ and ŷ
directions. These fields can be rapidly pulsed on and off
to manipulate nuclear spin states. The same coils are also
part of tuned circuits which are used to pick up the RF
signal generated by the precessing nuclei (much like how
a spinning magnet inductively generates an alternating
current in a nearby coil).

A typical experiment begins with a long waiting period
in which the nuclei are allowed to thermalize to equilib­
rium; this is on the order of 60 seconds for our sample.

the MIT Server

8

FIG. 6: Schematic diagram of an NMR apparatus.

Under control of the computer, RF pulses are then ap­
plied to effect the desired transformation on the state
of the nuclei. The high power pulse amplifiers are then
quickly switched off and a sensitive pre-amplifier is en­
abled, to measure the FID, which is then fourier trans­
formed to obtain a frequency spectrum with peaks whose
areas are functions of the spin states.

There are many important practical issues which lead
to observable imperfections. For example, spatial inho­
mogeneities in the static magnetic field cause nuclei in
different parts of the fields to precess at different fre­
quencies. This broadens lines in the spectrum. An even
more challenging problem is the homogeneity of the RF
field, which is generated by a coil which must be orthog­
onal to the B0 magnet; this geometric constraint and the
requirement to simultaneously maintain high B0 homo­
geneity usually forces the RF field to be inhomogeneous
and generated by a small coil, leading to imperfect con­
trol of the nuclear system. Also, pulse timing, and stabil­
ity of power, phase, and frequency are important issues.

4.3. Control system and software environment

Two linux computers are used in this experiment. The
qip workstation is the main controller for the Bruker
spectrometer; it will be setup in a server configuration
for you, and you should not need to interact with it un­
der normal operation. The main workstation used in this
experiment is linux terminal.
computer communicates with the other computer over
the network to control the spectrometer and perform ex­
periments. The main functions you will use are

• NMRCalib(pw,phref,d1) – applies one pulse of
width pw to the proton and carbon channels, for cal­
ibration of the center frequencies, the J coupling,
the phase references, and the 90 degree pulse widths
of the proton and carbon. A matlab structure con­
taining the proton and carbon spectra, as specified
below, is returned. The pulse performs a Rx rota-

Id: 49.qip.tex,v 1.68 2008/04/10 15:20:47 sewell Exp

tion. d1 is the delay time to wait before starting
the sequence.

•	NMRRunPulseProg(pw90,phref,pulses,phases,
delays,tavgflag,nucflag,d1) – runs a pulse
program, as specified by pulses, phases, delays
using the 90 degree pulse width pw90 specified,
returning a structure containing the proton and
carbon spectra, phased according to phref, as
described below. If tavgflag is 1 (that is the
default, if this parameter is left out), then the
averaging procedure for temporal labeling is
performed; otherwise, no averaging is performed
and just a single pair of spectra (one proton, one
carbon) are taken. nucflag specifies whether
both proton and carbon spectra are acquired (the
default case), or just one. d1 is the delay time to
wait before starting the sequence.

The function arguments follow the following form:

• pw = pulse width (for NMRCalib) in [µs]

• pw90 = 90-degree pulse width array (pro­
ton,carbon) in [µs]

• d1 = delay time to wait before pulse sequence in
[s]; the default value is 50 seconds, which should
be long enough for the sample to re-equilibrate be­
tween excitations.

• phref = vector of two scalar elements [φpφc] spec­
ifying the proton and carbon phase references, in
units of [deg]. The spectra are multiplied by
exp(iφp) and exp(iφc) by the program.

• pulses = 2×Np (two row, and Np column) matrix
specifying what pulse widths to apply for proton
and carbon. Np is the total number of pulses. The
first row gives the proton pulse widths, and the
second row gives the carbon pulse widths, in units
of pw90. For example, [1 0; 0 1] describes a sequence
of two 90-degree pulses, the first on the proton, and
the second on the carbon.

• phases = 2×Np matrix specifying the phases of
the proton and carbon pulses. The first row gives
the proton phases, and the second row the carbon
phases. Phases are 0, 1, 2, 3 for rotations about
the x̂, ŷ, −x̂, and −ŷ axes, respectively.

• delays = 1×Np vector specifying the delays, in
[ms], to perform after each pulse. The first element
in this vector specifies the delay after the first pulse,
and so forth. Note that the delays vector, the pulses
matrix, and the phases matrix must all have the
same number of columns.

• nucflag = 0 is acquire both spectra (the default), 1
is proton only, 2 is carbon only. The spect structure
that is returned will have only the corresponding
elements set.

the MIT Server The MIT Server

9 Id: 49.qip.tex,v 1.68 2008/04/10 15:20:47 sewell Exp

• tavgflag = 1 (the default) is to perform temporal
labeling, 0 is no temporal labeling.

The proton and carbon spectra must be taken sequen­
tially, one at a time, because the machine only has a
single receiver. And if the averaging procedure for tem­
peral labeling is performed, then this requires three ex­
periments (with two spectra each) to be taken, so you
have to be patient while the data is taken.

Each of these procedures returns (and saves) a data
structure containing the proton and carbon spectra.
Specifically, the returned or saved structure spect has
fields:

• spect.hfreq: proton frequency scale data [Hz] ­
relative to hsfo

• spect.cfreq: carbon frequency scale data [Hz] ­
relative to csfo

• spect.hspect: proton spectral data phased ac­
cording to hphase

• spect.cspect: carbon spectral data phased ac­
cording to cphase

• spect.cfid: carbon free induction decay data

• spect.hfid: proton free induction decay data

• spect.tacq acquisition time [sec]

• spect.hsfo: proton transmitter frequency [MHz]

• spect.csfo: carbon transmitter frequency [MHz]

• spect.dt: date-time marker [string]

• spect.hpeaks: integrals of proton peaks phased
according to hphase

• spect.cpeaks: integrals of carbon peaks phased
according to cphase

• spect.hphase: phase value for proton spectra [ra­
dians]

• spect.cphase: phase value for carbon spectra [ra­
dians]

• spect.pp: pulse program structure contain­
ing spect.pp.pulses, spect.pp.phases,
spect.pp.delays

• spect.tavgflag: flag indicating if temporal label­
ing was done [binary]

• spect.nucflag: flag indicating if one or both of the
proton and carbon spectra were acquired [0/1/2].
Normally set to 1 or 2 but not 0.

• spect.craw: cell array of the three carbon spectra
added together when temperal labeling is done

• spect.hraw: cell array of the three proton spectra
added together when temporal labeling is done

These two procedures will also save the en­
tire spect structure in a date-time stamped
file (e.g., spect-07Mar02-182304.mat, i.e.
spect-date-time.mat). You can load in this structure
for later analysis.

5. OBSERVATIONS AND MEASUREMENTS

5.1. OVERVIEW

A typical experiment will involve the following steps:

1. Measure phase references, and J .

2. Measure the pulse widths required to implement
Rx(π/2) rotations on the proton and carbon spins.

3. Measure T1 and T2 of the sample.

4. Implement a controlled-not gate and measure its
input-output truth table.

5. Implement the Deutsch-Jozsa quantum algorithm
and test its four cases.

6. (optional) Implement the Grover algorithm, test its
four cases, and observe the predicted theoretical
oscillation.

5.2. DETAILED PROCEDURE & ANALYSIS

You will need an instructor or graduate TA to intro­
duce you to the spectrometer during the first lab session.
It is a very sensitive system and there are special safety
precautions so please request help before you begin! Start
by ensuring the Junior Lab chloroform sample is in the
spectrometer, and taking a sample spectrum to make sure
things are working normally. The technical staff may also
need to shim the magnetic field to optimize its homogene­
ity. Each time you begin, you will want to quickly check
your basic measurements (of the proton and carbon fre­
quencies, and 90 degree pulse widths) again. Login to

 workstation, and then:

• 1. Start /usr/local/bin/matlab

• 2. addpath /home/nmrqc/matlab

• 3. NMRStartup

You should now have all the proper Junior Lab QIP
scripts in your path and can control the NMR ma­
chine. You may check that the network connection to
the spectrometer is up by running the script testnmrx.
If the connection is down, you will get the error mes­
sage “do nmr command failed”. In this case, you will

the MIT Server

Id: 49.qip.tex,v 1.68 2008/04/10 15:20:47 sewell Exp 10

need to go to the Bruker console and run the command
netnmr2 inside xwin-nmr; a staff member can help with
this. Aborting commands while communicating over the
network may also require you to restart netnmr2.

5.2.1. Measurement of phref, ωP , ωC , and J

Run NMRCalib with pw=5, and phref=[0 0]. The out­
put is the structure spect (type ’help NMRCalib’ for
more) and 2 plots will show up, one for carbon and one
for proton.

The data you obtain at first will have complex-valued
peak integrals, because the phase reference of the receiver
is not set properly (that is the role of phref). By plot­
ting spect.hspect versus spect.hfreq, determine what
value of φ you need, such that eiφπ/180 × spect.hspect
is real-valued (and appears as in Fig. 7). Do similarly
for the carbon. Then run NMRCalib again with these
two phase values in phref, and it will give you properly
phased spectra. Note that you do not need an absolutely
perfect phase setting for this experiment to work prop­
erly: having the imaginary component be �10% of the
real component is acceptable.

Example: The matlab commands

spect = NMRCalib(5,[10 34])

figure;

plot(real(spect.hfid));

figure;

plot(spect.hfreq,spect.hspect);

apply a 5 µs pulse to the proton, mea­
sure the proton and carbon spectra, and plot
these in two figures. 10 and 34 are used
as the phase reference angles; they should be
chosen (by you) such that the spectra are
real. The two plot commands plot the pro­
ton FID and the proton spectra. You can use
plot(spect.hfreq,exp(i*x)*spect.hspect) to
change the phase by x radians.

Analysis: Plot the free induction decay data
(spect.hfid and spect.cfid) as functions of time
(spect.tacq is the total acquisition time for each FID);
this is the data that is fourier transformed to give the
spectral data. Plot the absolute value of the spec­
tral data (spect.{hspect,cspect}) versus frequency
(spect.{hfreq,cfreq}), and note the four Lorentizan
lines. The RF frequency of the carrier has to be set to
exactly the center of the two split lines, for both the pro­
ton and carbon (this is how one works in the rotating
frame). Be sure to write down the filenames in which
your spectral data are saved, as you take them. Care­
fully measure the splitting between the lines, J , by fitting
Lorentzians to the spectral data. J should not change be­
tween experiments, and is not a function of the magnetic
field strength, but the proton and carbon frequencies may
drift slightly from session to session, and also depending

on how well the sample is shimmed. When fitting Loren­
tizans to the lines to obtain the best center positions,
refer back to Eq.(23).

The ideal thermal spectrum can be computed as the
fourier transform of Eq.(22), using the thermal density
matrix of Eq.(26) as the initial state ρ. It is useful to
know that if the initial state is a diagonal density matrix
ρ = diag(a, b, c, d), then after a Rx(π/2) readout pulse,
the peak integrals for the proton peaks are a − c and
b − d, and the carbon peaks are a − b and c − d. For
a voltage scale reference of V0 = 1, the integrals of the
two peaks in the proton spectrum should be +8 and +8,
while the carbon spectrum should have integrals +2 and
+2, as shown in Fig. 7. Write down the four peak
integrals from your real-valued spectra as your
reference thermal spectrum peak integral values
and assign their values to the theoretical ratios
(+8 or +2.

FIG. 7: Thermal spectra for proton (left) and carbon (right):
stick figures with nominal peak integrals.

You must be careful of the phase of the signals in this
lab, and be aware of how the phase is referenced. Ideally,
we wish a 90 degree pulse about x̂ to result in a real-
valued peak (i.e. a Lorentzian of Eq.(23) with arg α = 0).
Always be sure that a single Rx(π/2) pulse indeed gives
a spectrum with no net imaginary component! From
studying Eq.(23), you should note that because of Γ be­
ing nonzero, you will always see some imaginary spectral
component, but the integrated area of the peak will be
zero. The phase tells us the relative phase of the |0� and
|1� components of the proton and carbon qubits; equiv­
alently, this can be visualized as their point along the
equator of the Bloch sphere. The qubits start along +ẑ,
and then get tipped by a Rx(π/2) onto +ŷ, and by con­
vention we choose that to give us a real valued peak.
Thus, a Ry(π/2) pulse, which tips +ẑ onto +x̂ should
give us a purely imaginary valued peak; you may check
that this is true using NMRRunPulseProg.

Id: 49.qip.tex,v 1.68 2008/04/10 15:20:47 sewell Exp 11

5.2.2. Calibration of 90 degree pulse widths

Run NMRCalib with a set of different pulse widths to
determine the number of microseconds required for a π/2
pulse on the carbon and π/2 on the proton. Note that
they are different, not in the least because the two chan­
nels use different RF power amplifiers (why else might
they be different?). The best estimate comes from tak­
ing a regularly spaced set of pulse widths, and fitting
an exponentially damped sinusoid to the points given
by peak height versus pulse width (why does the sinu­
soid exponentially decay?). On a first pass, do not
spend too much time getting your calibrations
absolutely perfect; it is important that you get
through to finishing the lab.

Example: The matlab commands

peaks = [];
pwtab = linspace(1,15,8);
for pw = pwtab

sd	 = NMRCalib(pw,[10 34]);
peaks = [peaks ; sd.hpeaks sd.cpeaks]

end
figure;
plot(pwtab,real(peaks(:,1)));
figure;
plot(pwtab,real(peaks(:,3)));

will measure the proton and carbon spectra for 8
different peak widths from 1 to 15 microseconds,
and plot the real part of the left peak integrals
as a function of pulse width. [10 34] is a vec­
tor which specifies the phase references; be sure
to replace this with your own values. Note that
each signal acquisition takes ≈ 50 seconds (by
default), so the script as given above will take
≈ 50 ∗ 8 ∗ 2 = 13 minutes.

Analysis: Take the peak integrals from each of the
experiments and plot them as a function of the pulse
widths. (You should compare the peak integrals given
by the program to what you get from Lorentzian linefits.)
Fit an exponentially decaying sinusoid to the proton data
and to the carbon data, and from this determine the op­
timal 90 degree pulse widths for the two nuclei. What
sources of error contribute to your pulse width calibra­
tions?

5.2.3. Measurement of T1 and T2

T1 is measured using a 180 – Δt – 90 “inversion­
recovery” pulse sequence, and fitting an exponential de­
cay to the resulting data of peak height versus Δt. Use
NMRRunPulseProg for this; construct a pulse program
with appropriate pulse widths, phases, and delays to per­
form the experiment. Be aware that each FID acqui­
sition takes 50 seconds or more, because the sys­
tem must re-equilibrate between excitations. Do

not setup an experiment that will take too long
to complete. The purpose of this part is to familiar­
ize yourself with the system, and to put a lower bound
on T1 and T2 so that you can convince yourself that the
quantum information processing part of the experiment
should work.

Example: The matlab commands

peaks = [];

dtab = linspace(1,8000,5);

pulses=[2 1;0 0]

phases=[0 0 ;0 0]

nucflag = 0

for delay = dtab

sd	 = NMRRunPulseProg([7.3 5.5],[10 34],
pulses,phases,[delay 0],0,nucflag);

peaks = [peaks ; sd.hpeaks]

end

figure;

plot(dtab,real(peaks(:,1)));

will perform an inversion recovery T1 measure­
ment on the proton, taking 5 datapoints with
delays from 1 millisecond to 8 seconds. Note
that the units of delay is milliseconds. pulses
specifies that the first pulse should be a π pulse
on the proton, followed by a π/2 pulse on the
proton. phases specifies that all the pulses are
along +x̂. Note that [7.3 5.5] give the π/2
pulse widths for proton and carbon, in this ex­
ample, and should be replaced with your actual
measured values; similarly for the phase reference
values.

Analysis: Measure data to calculate T1, for both the
proton and carbon. Be warned that T1 is on the order
of 1 to 30 seconds, and you must wait ≥ 5T1 between
spectra for the sample to re-equilibrate. Also estimate T2

from the linewidths, obtained by fitting the Lorentzians
(and using your answer to prep question #5). Why does
the complex amplitude of the Lorentzians vary as they
do when you change Δt, particularly on the time scale of
2 to 8 milliseconds?

5.2.4. Characterization of controlled-not and its truth table

Write a pulse sequence for NMRRunPulseProg to im­
plement the “near”controlled-not gate (with strange
phases), Uncn = Rȳ1τRx1, where τ is a 1/2J delay, and
also your “real” controlled-not gate (which you obtained
as an answer to prep question #3), Ucn.

1. Apply Uncn and a readout pulse (Rx(π/2)) to the
thermal state, and take both proton and carbon
spectra; there should be only one readout pulse and
it should correspond to the nucleus you are acquir­
ing data for. (What should these spectra look like?)

2. Setup single and two-pulse sequences to prepare all
four possible classical inputs (00, 01, 10, 11), using

Id: 49.qip.tex,v 1.68 2008/04/10 15:20:47 sewell Exp 12

temporal labeling to prepare the initial 00. Then
apply U and a readout pulse, to confirm the classi­
cal truth table of the cnot.

3. Repeat the two above steps for your own	 cnot
pulse sequence, Ucn.

You will need to have a proper Ucn to proceed to the next
step of this lab!

Example: The matlab commands

pulses=[0 0 1;1 1 0]

phases=[0 0 0;0 3 0]

delays=[1/2/J 0 0]

tavgflag = 0

nucflag = 1

sd = NMRRunPulseProg([7.3 5.5],[10 34],

pulses,phases,delays,tavgflag,nucflag);

applies a near-cnot gate with one readout pulse
on the proton.

The first row of pulses specifies that only one
pulse should be applied to the proton, and this
is a π/2 pulse in the third time interval. The
second row of pulses specifies that π/2 pulses
are applied to the carbon, in the first and sec­
ond time intervals. The phases matrix specifies
that the proton pulse should be about x̂ (since
phases(1,3)=0), and the carbon pulses should be
about x̂ and −ŷ. And the delays vector specifies
that a delay of 1/2J (in milliseconds!) occurs af­
ter the first pulse is applied; this implements the
τ free-evolution unitary operator involved in the
construction of the near-cnot of Eq.(5).

To obtain a similar spectrum, but for the car­
bon, you will need to set nucflag=2 and move
the readout pulse to the carbon. tavgflag=0
tells the machine not to do temporal averaging,
so that it applies the pulse sequence to a ther­
mal spectrum. To apply the pulse sequence to
the state |00�, obtained by temporal averaging,
simply set tavgflag=1. To apply the sequence
to other pure inputs, such as |01�, you will need
to add additional pulses.

Analysis: Write down the four peak integrals you ob­
tain for the near-cnot applied to the thermal spectrum.
Refering back to prep question #1, and the four reference
peak integrals you obtained in the first part of this lab,
compare your peak integrals to make sure you
have the right ratios. That is, let PH1, PH2, PC1,
PC2 be the reference peak integrals, and P cn etc. be the H1
peak integrals for the cnot applied to the thermal state.
Compute P cn /PH1, P cn /PH2, P cn /PC1, P cn/PC2, and H1 H2 C1 C2
compare PH1/PC1 versus P cn /P cn If you see the right H1 C1.
peak integral ratios, then you have successfully imple­
mented a logic operation on two nuclear spins – your
first simple quantum computation!

Be sure to estimate your errors - where do they come
from, and are your results within a standard deviation of
the ideal theoretical prediction? Also verify that you are

able to create the 00, 01, 10, and 11 states by acquiring
corresponding spectra; note that a 0 is a positive real
peak, and a 1 is a negative real peak. How close is your
output to the theoretical ideal?

Show that for these inputs (the thermal state and the
computational basis states) the proton and carbon spec­
tra should be the same whether you implement the ideal
cnot, with all the proper phases, or the “near” cnot,
on the thermal state (or indeed, on any classical input
state).

If the spins are in a computational basis state (i.e. 00,
01, 10, or 11), then readout of the proton (or carbon)
spectrum alone actually gives full information about the
state; only one of the two spectra need be acquired. How
does one obtain the state from one spectrum, and why is
this possible?

5.2.5. Implementation of Deutsch-Jozsa quantum algorithm

The Deutsch-Jozsa algorithm has four possible cases,
corresponding to the four possible functions mapping one
bit to one bit. Let these be f1, f2, f3, and f4. In prep
question #4, you found pulse sequences to implement
these functions. As a hint: Uf 2 needs just one pulse,
Uf3 = Ucn, and Uf4 is a simple modification of Uf 3.
Put these together with the theoretical discussion above
sequences implementing the full algorithm for four cases.
Specifically, translate Eq.(21) into pulses. You should be
able to fit the sequences into at most eight pulses on each
spin. For example, for k = 1 the pulse sequence is simply
Rȳ2Ry1Ry2Rȳ1, since Uf 1 is the identity operation.

Write pulse programs for all these four cases, adding
readout pulse, and run NMRRunPulseProg to acquire the
data. It is helpful to translate your pulses into matrices
and confirm theoretically that their product gives the ex­
pected theoretical result, and matches your experimental
observations.
Analysis: Be sure to set your phase reference phref
properly (as in the calibration step above) such that plot­
ting the reference thermal spectra gives you a positive set
of peak parameters α. With the same phref, you should
find that all the output spectra from the Deutsch-Jozsa
experiments give real-valued peak integrals, if all your
gates (and in particular, your cnot gate) are correct.

You should obtain the same spectra for the k = 1 and
k = 2 cases, and a different spectrum for the k = 3 and
k = 4 cases. Verify that this is the case. Note that just
as for the controlled-not gate experiment, only one of
the two (proton and carbon) spectra are needed to fully
distinguish the outputs of the two-qubit Deutsch-Jozsa
algorithm.

What sources of error contribute to getting non-ideal
spectra? Compute the theoretically expected spec­
tra, and propagate errors from all your measure­
ments and calibrations to obtain an estimate of
how far you expect to be off from the ideal; are
you within one standard deviation, and if not,

Id: 49.qip.tex,v 1.68 2008/04/10 15:20:47 sewell Exp 13

why?
Further optional topics: Can you identify where the

quantum behavior of the spin system is uniquely required
for this algorithm to work? What choice of assignment
of qubits to spins did you use, and what happens if you
reverse this?

6. SUGGESTED ADVANCED TOPICS

6.1.	 NMR techniques for quantum computation
with other physical systems

The techniques you learned in this lab for quantum
computation with NMR are actually extremely similar
to what is employed to perform quantum computations
with other atomic, molecular, and optical implementa­
tions. For example, the Deutsch-Jozsa algorithm was re­
cently implemented[17] on a trapped Ca ion, using pulses
of laser light similar to the RF pulses used in this lab.
Investigate how quantum bits are realized using trapped
ions or superconductors and describe how pulsed excita­
tions implement quantum computations in those systems.

6.2. Entangled states in NMR

One of the most intriguing aspects of quantum sys­
tems is a property known as entanglement; it is widely

believed that entanglement is necessary to achieve any
significant computational speedup (or nontrivial crypto­
graphic protocol with qubits) – although this necessity
remains unproven in general. By definition, a pure state
of two systems A and B in a state |ψAB � is entangled
if and only if it cannot be written as a tensor product,
that is, there does not exist |ψA� and |ψB � such that
|ψAB � = |ψA�⊗ |ψB �. Of such entangled states, the most
well studied are the four two-qubit states

|Ψ+� =
|00�√+

2
|11�

(36)

Ψ−� =
|00� − |11�

(37)| √
2

|Φ+� =
|01�√+

2
|10�

(38)

=	
|01� − |10�

(39)|Φ−� √
2

Give quantum circuits for creating these four states from
the initial state |00�, describe how to implement this on
the two-qubit chloroform system used in this lab, and
explain what the measured output signal should be.

[1] D. G. Cory, A.	 F. Fahmy, and T. F. Havel, Proc. Nat.
Acad. Sci. USA 94, 1634 (1997).

[2] N.	 Gershenfeld and I. L. Chuang, Science 275, 350
(1997).

[3] R. P. Feynman, Int. J. Theor. Phys. 21, 467 (1982).
[4] H. Leff and R. Rex,	 Maxwell’s Demon: Entropy, Infor­

mation, Computing (Princeton University Press, Prince­
ton, NJ, 1990).

[5] R. Landauer, IBM J. Res. Dev. 5, 183 (1961).
[6] C. H. Bennett, IBM J. Res. Dev. 17, 525 (1973).
[7] E.	 Fredkin and T. Toffoli, Int. J. Theor. Phys. 21, 219

(1982).
[8] P. Benioff, J. Stat. Phys. 22, 563 (1980).
[9] R. P. Feynman, Optics News p. 11 (1985).

[10] D. Deutsch, Proc. R. Soc. London A 425, 73 (1989).
[11] P.	 W. Shor, in Proceedings, 35th Annual Symposium

on Foundations of Computer Science (IEEE Press, Los
Alamitos, CA, 1994), pp. 124–134.

[12] D. Simon,	 in Proceedings, 35th Annual Symposium on
Foundations of Computer Science (IEEE Press, Los
Alamitos, CA, 1994), pp. 116–123.

[13] L.	 K. Grover, in 28th ACM Symposium on Theory of
Computation (Association for Computing Machinery,
New York, 1996), p. 212.

[14] D. Cory, R. Laflamme, E. Knill, L. Viola, T. Havel,
N. Boulant, G. Boutis, E. Fortunato, S. Lloyd, R. Mar­
tinez, et al., Fortschr. Phys. 48, 875 (2000).

[15] L.	 Vandersypen, C. Yannoni, and I. Chuang, in to ap­
pear in The encyclopedia of NMR (supplement), edited
by D. Grant and R. Harris (John Wiley and Sons, West
Sussex, England, 2001).

[16] M.	 Nielsen and I. Chuang, Quantum computation
and quantum information (Cambridge University Press,
Cambridge, England, 2000).

[17] Guilde,	 Riebe, Lancaster, Becher, Eschner, Haffner,
Schmidt-Kaler, Chuang, and Blatt, Nature 421, 48
(2003).

APPENDIX A: BLOCH SPHERE

REPRESENTATION OF A SINGLE QUBIT

Recall that a single qubit in the state a|0� + b|1� can
be visualized as a point (θ, φ) on the unit sphere, where
a = cos(θ/2), b = eiφ sin(θ/2), and a can be taken to be
real because the overall phase of the state is unobserv­
able. This is called the Bloch sphere representation, and
the vector (cos φ sin θ, sin φ sin θ, cos θ) is called the Bloch
vector.

The Pauli matrices give rise to three useful classes of
unitary matrices when they are exponentiated, the rota­
tion operators about the x̂, ŷ, and ẑ axes, defined by the

� �

� �

�

equations:

Rx(θ) ≡ e−iθX/2 = cos
θ
2
I − i sin

θ
2
X � �

=
cos θ

2

−i sin θ
2

−i sin θ
2

cos θ
2

(A1)

Ry(θ) ≡ e−iθY /2 = cos
θ
2
I − i sin

θ
2
Y � �

=
cos θ

2

sin θ
2

− sin θ
2

cos θ
2

(A2)

Rz(θ) ≡ e−iθZ/2 = cos
θ
2
I − i sin

θ
2
Z � �

=
e−iθ/2

0
0

eiθ/2
. (A3)

One reason why the Rn̂(θ) operators are referred to as
rotation operators is the following fact. Suppose a single
qubit has a state represented by the Bloch vector �λ. Then
the effect of the rotation Rn̂(θ) on the state is to rotate
it by an angle θ about the n̂ axis of the Bloch sphere.
This explains the rather mysterious looking factor of two
in the definition of the rotation matrices.

An arbitrary unitary operator on a single qubit can
be written in many ways as a combination of rotations,
together with global phase shifts on the qubit. A useful
theorem to remember is the following: Suppose U is a
unitary operation on a single qubit. Then there exist
real numbers α, β, γ and δ such that

U = e iαRx(β)Ry (γ)Rx(δ) . (A4)

APPENDIX B: FUNDAMENTAL EQUATIONS
OF MAGNETIC RESONANCE

The magnetic interaction of a classical electromag­
netic field with a two-state spin is described by the
Hamiltonian H = −µ� B� , where µ� is the spin, and·
B = B0ẑ + B1(x̂ cos ωt + ŷ sin ωt) is a typical applied
magnetic field. B0 is static and very large, and B1 is
usually time varying and several orders of magnitude
smaller than B0 in strength, so that perturbation theory
is traditionally employed to study this system. However,
the Schr¨odinger equation for this system can be solved
straightforwardly without perturbation theory, in terms
of which the Hamiltonian can be written as

H =
ω0
Z + g(X cos ωt + Y sin ωt) , (B1)

2

where g is related to the strength of the B1 field, and
ω0 to B0, and X,Y, Z are the Pauli matrices as usual.
Define |φ(t)� = eiωtZ/2|χ(t)�, such that the Schr¨odinger
equation

i∂t|χ(t)� = H|χ(t)� (B2)

Id: 49.qip.tex,v 1.68 2008/04/10 15:20:47 sewell Exp 14

can be re-expressed as

i∂t|φ(t)� = eiωZt/2He−iωZt/2 −
ω
2
Z |φ(t)� . (B3)

Since

eiωZt/2Xe−iωZt/2 = (X cos ωt − Y sin ωt) , (B4)

(B3) simplifies to become

i∂t|φ(t)� =
ω0

2
− ω

Z + gX |φ(t)� , (B5)

where the terms on the right multiplying the state can be
identified as the effective ‘rotating frame’ Hamiltonian.
The solution to this equation is

» –

i ω0
2
−ω

Z+gX t
|φ(t)� = e |φ(0)� . (B6)

The concept of resonance arises from the behavior of
this solution, which can be understood to be a single
qubit rotation about the axis

ẑ + 2g x̂
n̂ = � �

ω0−ω �2
(B7)

1 + 2g
ω0−ω

by an angle � �2

|�n| = t
ω0

2
− ω

+ g2 . (B8)

When ω is far from ω0, the spin is negligibly affected
by the B1 field; the axis of its rotation is nearly parallel
with ẑ, and its time evolution is nearly exactly that of the
free B0 Hamiltonian. On the other hand, when ω0 ≈ ω,
the B0 contribution becomes negligible, and a small B1

field can cause large changes in the state, corresponding
to rotations about the x̂ axis. The enormous effect a
small perturbation can have on the spin system, when
tuned to the appropriate frequency, is responsible for the
‘resonance’ in nuclear magnetic resonance.

In general, when ω = ω0, the single spin rotating frame
Hamiltonian can be written as

H = g1(t)X + g2(t)Y , (B9)

where g1 and g2 are functions of the applied transverse
RF fields.

APPENDIX C: STATE TOMOGRAPHY

How does one debug a quantum computer? A classi­
cal computer is analyzed by measuring its internal state
at different points in time. Analogously, for a quantum
computer, an essential technique is the ability to measure
its density matrix – this is called state tomography.

� �

Id: 49.qip.tex,v 1.68 2008/04/10 15:20:47 sewell Exp 15

Recall that the density matrix of a single qubit can be
expressed as

1 �
ρ = 1 + rkσk , (C1)

2
k

where σk are the Pauli matrices and rb is a real, three-
component vector. Because of the trace orthogonality
property of Pauli matrices,

tr(σkσj) = 2δkj , (C2)

it follows that ρ can be reconstructed from the three mea­
surement results

rk = �σk� = tr(ρσk) . (C3)

Measurement of the usual observable in NMR, (22), pre­
ceded by the appropriate single qubit pulses, allows us
to determine �σk�, and thus obtain ρ. Similar results
hold for larger numbers of spins. In practice, it is con­
venient to measure just the traceless deviation of ρ from
the identity; this is called the deviation density matrix.

� � � �

Id: 49.qip.tex,v 1.68 2008/04/10 15:20:47 sewell Exp 16

find |ψ1� = |11�, which is the desired result. Indeed,
for the other three possible values of x0 we also find
|ψ1� = |x0�. Another feature of the algorithm is that
|x0� = |ψ1� = −|ψ4� = |ψ7� = −|ψ10�, a period of 3
if the overall sign is disregarded. You may (option­
ally) implement Grover’s algorithm and observe
all four cases of x0. Time permitting, you may
also confirm the predicted oscillatory behavior.

2. Implementation of Grover quantum algorithm

The Grover algorithm for two qubits has four possible
cases, corresponding to searching one of the four special
elements x0, x1, x2 or x3. Construct the individual cir­
cuit elements, P and O using just Z-rotation, time delays
and Hadamard gates. Then simplify your sequences us­
ing the tricks below and keeping in mind that Z-rotations
and time delays commute:

H = Z2Y ̄ (D4)
H = X2Y (D5)

ZY ̄ Z ¯ = X (D6)

APPENDIX D: QUANTUM ALGORITHM:
GROVER (OPTIONAL)

In this lab, you may optionally implement the Grover
quantum search algorithm on two qubits.

1. Theory

Another quantum algorithm which solves a problem
faster than is possible classically is Grover’s quantum
search algorithm: for a problem size of four elements
(n = 2 qubits), we are given the set x = {0, 1, 2, 3} for
which f(x) = 0 except at one value x0, where f(x0) = 1.
The goal is to find x0, which can be classically accom­
plished by evaluating f(x) an average of 2.25 times. In
comparison, the quantum algorithm finds x0 by evaluat­
ing f(x) only once.

Three operators are required: the oracle operator O
(which performs a phase flip based on the function f(x)),
the Hadamard operator on two qubits H⊗2, and the con­
ditional phase shift operator P . The oracle O flips the
sign of the basis element corresponding to x0; for x0 = 3,
this is ⎤⎡ Do not simplify the first two Hadamard gates. You will

1 0 0 0 be able to specify the number of grover iterations you ⎢⎢⎢⎣

⎥⎥⎥⎦0 1 0 0
0 0 1 0

(D1) wish to apply. O = ,
Write pulse programs for all these four cases, and run

NMRRunPulseProg to acquire the data. 0 0 0 −1

Denoting free evolution period of time 1/2J as τ , we find
that O = Ry1Rx1Rȳ1Ry2Rx2Rȳ2 τ (up to an irrelevant APPENDIX E: INTERFACE TO BRUKER’S
overall phase factor) for the x0 = 3 case, where each of XWIN-NMR
the rotations is by the angle π/2. H⊗2 is the operator

This appendix contains some reference information
1 1 1 1 1 1 = √
2 1 −1

⊗ √
2 1 −1

about the QIP experiment software configuration which
you will generally not need to know for this lab, but may

H⊗2 (D2)

be helpful for instructors when debugging problems.
which can be implemented as H⊗2 = netnmr2 is a C program (called an “au” script) which
Rx1(π)Ry1(π/2)Rx2(π)Ry2(π/2). And the operator runs under xwin-nmr. It is a server which listens on a
P , special socket port for commands sent from Matlab over

TCP/IP. Under xwin-nmr, you can start a netnmr2 pro­⎤⎡
1 0 0 0 cess by typing “netnmr2” into the xwin-nmr command

(D3) prompt line; it will respond with a message saying that
the server is running. You can check to see if a netnmr2

⎢⎢⎢⎣

⎥⎥⎥⎦0 −1 0 0
0 0

P =
−1 0
0 server is already running by typing “show cmd”. You can 0 0 −1

kill a process by typing “kill” – then click on the process
to kill. is simply realized as P = Ry1Rx̄1Rȳ1Ry2Rx̄2Rȳ2 τ , where

Matlab speaks to netnmr2 using a MEX function,
nmrx. This function can send text commands to xwin­
nmr, read parameters, run experiments, and retrieve
data. For example, nmrx(’zg’) sends the “zg” command
to xwin-nmr, which is “zero-go”; it zeros memory then
runs an experiment. This command waits until the ex­
periment is done, then returns control to matlab.

again the angles are π/2. From these, we construct the
Grover iteration G = H⊗2PH⊗2O. This operator can be
simplified straightforwardly by eliminating unnecessary
operations which obviously cancel.

Let |ψk� = GkH⊗2|00� be the state after k applica­
tions of the Grover iteration to the initial state. We
find that the amplitude �x0|ψk� ≈ sin((2k + 1)θ), where
θ = arcsin(1/

√
2); this periodicity is a fundamental prop­

erty of the quantum search algorithm, and is a natu­
ral feature to test in an experiment. For x0 = 3, we

� ��

� � � �

� �

� �

� �

� �

Id: 49.qip.tex,v 1.68 2008/04/10 15:20:47 sewell Exp 17

APPENDIX F: MATHEMATICS OF COMPOSITE The tensor product of the Pauli matrices X and Y is ⎤⎡QUANTUM SYSTEMS
0 0 0 −i

0⎢⎢⎢⎣

⎥⎥⎥⎦
0 Y 1 0 0Y iGiven quantum systems A and B, how does one prop­

erly describe the composite quantum system represented
. (F6)· ·=X ⊗ Y =

1 Y 0 0 −i 0 0
0

Y· ·
“A + B” by the combination of the two subsystems? In i 0 0
quantum mechanics, the answer is the tensor product.

Suppose V and W are vector spaces of dimension m
and n respectively. For convenience we also suppose that
V and W are Hilbert spaces. Then V ⊗W (read ‘V tensor
W ’) is an mn dimensional vector space. The elements
of V ⊗ W are linear combinations of ‘tensor products’
|v�⊗|w� of elements |v� of V and |w� of W . In particular,
if i� and |j� are orthonormal bases for the spaces V and
W
|
then |i� ⊗ |j� is a basis for V ⊗ W . We often use the

abbreviated notations v, w� or even |vw� for the
For example, if V

|v�|w�, |
w�.tensor product |v� ⊗

In Matlab, you can use the function kron for the Kro­
necker product.

APPENDIX G: HOW PROTON AND CARBON

SPECTRA ARISE FROM THE DENSITY

MATRIX

A two-spin density matrix ⎤⎡
is a two- a 0 0 0|

|

⎢⎢⎢⎣

⎥⎥⎥⎦ (G1)
dimensional vector space with basis vectors |0� and |1�
then |0�⊗ |0� + |1�⊗ |1� is an element of V ⊗ V . In terms ρ =

of vector notation, for example, where 0� = (10)T and

0 b 0 0
0 0 c 0

1�
|
= (0100)T , and 0 0 0 d1� = (01)T , the tensor product

0� ⊗ 0� = (1000)T , and so forth.
0� ⊗| |

produces a proton spectrum with peak areas a − c and| |
By definition the tensor product satisfies the following

basic properties:

1. For an arbitrary scalar z and elements v� of V and
|w� of W ,

|

z (|v� ⊗ |w�) = (z|v�) ⊗ |w� = |v� ⊗ (z|w�) . (F1)

2. For arbitrary andv1� and |v2� in V w� in W ,| |

(|v1� + |v2�) ⊗ |w� = |v1� ⊗ |w� + |v2� ⊗ |w�. (F2)

b − d for the ωP − J/2 and ωP + J/2 peaks, respectively,
after a Rx(π/2) ⊗ I proton readout pulse is applied. The
same density matrix also produces a carbon spectrum
with peak areas a − b and c − d for the ωC − J/2 and
ωC + J/2 peaks, respectively, after a I ⊗ Rx(π/2) carbon
readout pulse is applied.

Here, we prove this claim, based on the fact that the
voltage in the pick-up coil for spin k is given by

V (t) = −V0tr e−iHtρeiHt(iσk + σk) , (G2)x y

where H is the Hamiltonian for the two-spin system, σx
k

and σy
k operate only on the kth spin, and V0 is a constant

factor dependent on coil geometry, quality factor, and
maximum magnetic flux from the sample volume.

1. The readout operator

Let RxP = Rx(π/2) ⊗ I denote a π/2 readout pulse on
the proton, and RxC similarly for the carbon. Our goal

3. For arbitrary |v� in V and |w1� and |w2� in W ,

|v� ⊗ (|w1� + |w2�) = |v� ⊗ |w1� + |v� ⊗ |w2�. (F3)

For matrices, the tensor product is also known as the
Kronecker product. For example, suppose A is an m by
n matrix, and B is a p by q matrix. Then we have the
matrix representation:

nq �⎫⎪⎪⎪⎪⎬

⎤⎡
A11B A12B . . . A1nB

is to compute ⎢⎢⎢⎢⎣

⎥⎥⎥⎥⎦

e−iHtRxP ρR
† iHt[(iσxVP (t) = −V0tr xP e + σy) ⊗ I]A21B A22B . . . A2nB

.

,
mp . (F4)A ⊗ B ≡

(G3)⎪⎪⎪⎪⎭ and similarly for the carbon. It is helpful first to move
Am1B Am2B . . . AmnB into the rotating frame of the proton and carbon, in

which case nothing changes except we utilize the Hamil­
tonian

In this representation terms like A11B denote p by q sub-
matrices whose entries are proportional to B, with over­
all proportionality constant A11. For example, the tensor J

product of the vectors (1, 2) and (2, 3) is the vector H =

4
σz ⊗ σz , (G4)
⎤⎡⎤⎡

1 2
2

⊗
3

=
⎢⎢⎢⎣

1 × 2
1 × 3
2 × 2
2 × 3

⎥⎥⎥⎦
=
⎢⎢⎢⎣

2 property of the trace, VP (t) can be written as⎥⎥⎥⎦
. (F5)3

4 VP (t) = −V0tr ρR
† iHt[(iσx + σy) ⊗ I]e−iHtRxPxP e ,

(G5)6

representing the spin-spin coupling. Utilizing the cyclic

� �

� �

Id: 49.qip.tex,v 1.68 2008/04/10 15:20:47 sewell Exp 18

at which point it is useful to define	 as our proton magnetization “readout operator,” such
that VP (t) = V0tr(ρ M̂P). Explicitly working this out in

M̂P = −R† iHt (iσx + σy) ⊗ I e−iHtRxP (G6) terms of matrix products, we obtain:
xP e

⎤⎡ ⎢⎢⎢⎣

0 0 0 0
0 0 0 0
2 i 0 0 0
0 2 i 0 0

⎥⎥⎥⎦
M̂P = iHt e−iHtRxP−R†xP e (G7)

⎤⎡⎤⎡⎤⎡ −i
4 J t 0 0 04 J t

0

i

e
0 0 0 0 0 0 0 e e ⎢⎢⎢⎣

⎢⎢⎢⎣

⎥⎥⎥⎦

⎢⎢⎢⎣

⎥⎥⎥⎦

⎥⎥⎥⎦

−
4
i J t i

4 J t

0 0
0 0 0 0 0 0 0 0 0e −R†xP RxP (G8)= −i

4 J t 0
i
4 J t

0 2 i 0 0 0 0 0
0 0 2 i 0 0 0 0e e

−i
44 J t ⎤i ⎡

J t 0 0 0 e e

0 0 0 0
0 0 0 0 ⎢⎢⎢⎣

⎥⎥⎥⎦−R†xP RxP	 (G9)=
2 J t

0 2 i e

i

2 ie− 0 0 0

⎤⎡⎤
2 J t i ⎡
⎤
⎡

0 0
1 i√
2

√
2

1 0 −i√
2

√
2

0 0 00 0 0 0 ⎢⎢⎢⎢⎣

⎥⎥⎥⎥⎦

⎥⎥⎥⎦

⎢⎢⎢⎢⎣

⎥⎥⎥⎥⎦

⎢⎢⎢⎣

1 i√
2

√
2

0 1 0 −i√
2

√
2

−i 0 1√
2

√
2

0

0 0 0 0 0 0 (G10)= − i

i

2 J t

0 2 i e

2 J t

i 1√
2

√
2

0 0 2 ie−
i

0 0 0
2 J t 0 0 i 1√

2
√

2
0 −i 0 1√

2
√

2
0 0 ⎡ ⎤ −
2
i J t 0 0−ie−

0
e ⎢⎢⎢⎣

⎥⎥⎥⎦

i J t 2
i −i e 2 J t

0
0 e (G11)= .−i

2

i

2 J t

2 J t

i

Similarly, we find that the analogous carbon magnetization “readout operator”

J t 0−ie−

0
−e

i −e 2 J t

M̂C

0−i e

is

⎡
M̂C = −R† iHt I ⊗ (iσx + σy) e−iHtRxCxC e (G12) ⎤ ⎢⎢⎢⎣

0 0 0 0
2 i 0 0 0
0 0 0 0
0 0 2 i 0

⎥⎥⎥⎦
iHt e−iHtRxC−R†xC e (G13)=

⎡ ⎤

i

−i J t 2

2 J t

i −ie− 2 J t

−i
0 0e ⎢⎢⎢⎣

⎥⎥⎥⎦

J t 0 0
i
2 J t

−ie−

0
−e 2

(G14)= .

i

i
2 J t

0 0 −i e 2 J t

0 i e −
i −e 2 J t

e

2.	 The proton and carbon spectra proton (centered in frequency around ωP) and carbon
(centered about ωC) for any state ρ. For the state in

M̂P and M̂C are very useful, because they now allows Eq.(G1), we obtain the proton FID

us to compute the free induction decay signal for the

� �

� �

Id: 49.qip.tex,v 1.68 2008/04/10 15:20:47 sewell Exp 19

VP (t) (G15)⎞⎤⎡⎤ −
2
i J t a 0 0 0 0 −ie− 0e

0 b 0 0 0

= V0tr(ρM̂P)

= V0tr

⎡⎛
2 J t

e 2 J t 0 −i e 2 J t

0

i

i

i⎢⎢⎢⎣

⎜⎜⎜⎝

⎢⎢⎢⎣

⎥⎥⎥⎦

⎟⎟⎟⎠⎥⎥⎥⎦ (G16)−i
22 J t

−i e 2 J t 2 J t

= V0 (a − c)e−iJt/2 + (b − d)eiJt/2 . (G17)

i

And for the carbon FID,

i

i

0 0 c 0 0 J t −ie−

0
−e

0 0 0 0d −e

VC (t) = V0
�tr(ρM̂C) = V0 (a − b)e−iJt/2 + (c − d)eiJt/2 .

(G18)
Note that in general, it is likely that the proton and car­
bon signals have different voltage scale factors V0, since
they are usually detected by different pick-up coils in an
experimental apparatus, and this is reflected in the use
of V0

� in the last equation above.
These equations may also be used to show why appli­

cation of two simultaneous readout pulses (to proton and
carbon) in one experiment may give different final volt­
age signals than applying one readout pulse at a time
and doing two experiments.

APPENDIX H: MATLAB SCRIPT QIPGATES.M

This is a Matlab script which defines quantities useful
for computing what you should obtain theoretically in
this experiment. The theory describes the experiment
extremely well, so what you obtain with matlab is what
you can obtain in the experiment.

%
% File: qipgates.m
% Date: 26-Feb-03
% Author: I. Chuang <ichuang@mit.edu>
%
% Standard QC gates; with proper sign convention to be
% consistent with MIT Junior Lab quantum information processing labguide

global hadamard cnot cphase sx sy sz si rx ry rz N zz xx yy

%%%
% pauli matrices

sx = [0 1; 1 0];
sy = [0 -i; i 0];
sz = [1 0; 0 -1];
si = [1 0; 0 1];

pauli = {sx,sy,sz};

Id: 49.qip.tex,v 1.68 2008/04/10 15:20:47 sewell Exp 20

%%%
% two-qubit interaction terms

zz = kron(sz,sz);
xx = kron(sx,sx);
yy = kron(sy,sy);
zi = kron(sz,si);
iz = kron(si,sz);
ii = kron(si,si);

%%%
% single qubit rotations (acting on 1 qubit: 2x2 unitaries)

rx = expm(-i*pi/4*sx);
ry = expm(-i*pi/4*sy);
rz = expm(-i*pi/4*sz);

%%%
% single qubit rotations (acting on 1 of 2 qubits: 4x4 unitaries)

rx1 = kron(si,rx);
rx2 = kron(rx,si);
ry1 = kron(si,ry);
ry2 = kron(ry,si);
rz1 = kron(si,rz);
rz2 = kron(rz,si);

%%%
% one-qubit computational basis states

psi0 = [1 ; 0];
psi1 = [0 ; 1];

%%%
% two-qubit computational basis states

psi00 = kron(psi0,psi0);
psi01 = kron(psi0,psi1);
psi10 = kron(psi1,psi0);
psi11 = kron(psi1,psi1);

%%%
% two-qubit Hamiltonian (for CHCl3) & coupled evolution gate

ham = zz;
tau = expm(-i*pi/4*zz);

%%%
% standard ideal quantum logic gates

hadamard = [1 1 ; 1 -1]/sqrt(2);

cnot = [1 0 0 0 ; 0 1 0 0 ; 0 0 0 1 ; 0 0 1 0];

cphase = [1 0 0 0 ; 0 1 0 0 ; 0 0 1 0 ; 0 0 0 -1];

Id: 49.qip.tex,v 1.68 2008/04/10 15:20:47 sewell Exp 21

%%%
% Example: near-controlled-not

Uncnot = ry1’ * tau * rx1;

%%%
% Example: effect of Uncnot on thermal state density matrix

rho_therm = [5 0 0 0; 0 3 0 0; 0 0 -3 0; 0 0 0 -5];
rho_out = Uncnot * rho_therm * Uncnot’;

%%%
% Example: Deutsch-Jozsa

Uf1 = [1 0 0 0 ; 0 1 0 0 ; 0 0 1 0 ; 0 0 0 1];
Uf2 = [0 1 0 0 ; 1 0 0 0 ; 0 0 0 1 ; 0 0 1 0];
Uf3 = [1 0 0 0 ; 0 1 0 0 ; 0 0 0 1 ; 0 0 1 0];
Uf4 = [0 1 0 0 ; 1 0 0 0 ; 0 0 1 0 ; 0 0 0 1];

Udj1 = ry2’ * ry1 * Uf1 * ry2 * ry1’;
Udj2 = ry2’ * ry1 * Uf2 * ry2 * ry1’;
Udj3 = ry2’ * ry1 * Uf3 * ry2 * ry1’;
Udj4 = ry2’ * ry1 * Uf4 * ry2 * ry1’;

Out1 = Udj1 * psi00;
Out2 = Udj2 * psi00;
Out3 = Udj3 * psi00;
Out4 = Udj4 * psi00;

