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Pulsed Nuclear Magnetic Resonance: Spin Echoes 

MIT Department of Physics 
(Dated: January 31, 2008) 

Magnetic resonances of protons in various substances are studied by the techniques of pulsed NMR 
and the measurement of spin echoes. Various substances containing protons (water, glycerine, etc.) 
are placed in a uniform magnetic field and subjected to pulses of a transverse ∼7 MHz rf magnetic 
field in near resonance with the Larmor precession frequency of the protons. The spin-lattice and 
spin-spin relaxation time constants are determined from measurements of the free-induction signals 
and the spin echoes produced by various combinations of rf pulses. Temperature effects are observed 
in glycerine, and the effects of paramagnetic ions on the relaxation time constants in water are 
measured. The magnetic moments of the proton and of the fluorine nucleus are derived from the 
data. 

1.	 PREPARATORY QUESTIONS 5. The samples used in the NMR measurements 
contain very large numbers of the dipoles being 

1. Show that the Larmor precession angular velocity studied. These interact with one another and 
are in thermal equilibrium at room temperature. with which a particle with spin angular momentum

I� and magnetic dipole µ� = γI� precesses in I�
The relative populations of their allowed energy 
states therefore follow the Boltzmann distribution, = 

a uniform magnetic field B�0 is independent of the 
angle between �µ and B�0 and given by 

ω0 = γB0 = (gµN /�)B0. (1) 

g is the counterpart of the Landé g-factor in atomic 
spectroscopy and is given by 

g = (µ/µN )/I,	 (2) 

where µN is the nuclear magneton, e�/2mp. 

For protons, g = 5.58, so γ = 26.8 x103 radi­
ans sec−1 gauss−1 , corresponding to 4.26 MHz / 
kGauss. (1 Gauss = 10−4 Tesla.) 

2. Derive the classical expression for the potential en­
ergy of a magnetic dipole in a magnetic field. 

3. According to quantum mechanics the component of 
angular momentum in a given direction, e.g. the di­
rection of B�0, is an integer or half-integer multiple 
of �. Write an expression for the energies Um, for 
the various possible states of a nucleus with total 
angular momentum quantum number I in a mag­
netic field. Draw diagrams of U vs B0 over the 
range 0 to 10,000 Gauss, showing the variation with 
B0 (“splitting”) of the energy levels of the proton 
and fluorine magnetic moments. 

4. Show on the above diagrams the frequencies of pho­
tons which would cause transitions among the var­
ious levels at B0 = 1770 Gauss. Confirm that the 
photon frequencies are the same as the correspond­
ing Larmor frequencies. 

namely N ∝ exp−E/kT . Calculate the frac­
tional difference in the populations of the mag­
netic states of the proton in a sample at room tem­
perature in a magnetic field of 1770 Gauss, i.e. 
(n+ − n−)/(n+ + n−). 

2. PROGRESS CHECK 

By the end of your 2nd session in lab you should have a 
determination of the nuclear magnetic moment of fluorine 
in units of the nuclear magneton. You should also have 
a preliminary value of t2 for 100% glycerine. 

3. INTRODUCTION 

The NMR method for measuring nuclear magnetic mo­
ments was conceived independently in the late 1940’s by 
Felix Bloch and Edward Purcell [1–3]. Both investiga­
tors, applying somewhat different techniques, developed 
methods for determining the magnetic moments of nuclei 
in solid and liquid samples by measuring the frequencies 
of oscillating electromagnetic fields that induced tran­
sitions among their magnetic substates resulting in the 
transfer of energy between the sample and the measur­
ing device. Although the amounts of energy transferred 
are extremely small, the fact that the energy transfer is a 
resonance phenomenon enabled it to be measured. Bloch 
and Purcell both irradiated their samples with a contin­
uous wave (cw) of constant frequency while simultane­
ously sweeping the magnetic field through the resonance 
condition. Cw methods are rarely used in modern NMR 
experiments. Radiofrequency (rf) energy is usually ap­
plied in the form of short bursts of radiation (pulse nmr) 
and the effects of the induced energy level transitions are 
observed in the time between bursts. It is experimentally 
much easier to detect the extremely small effects of the 
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transitions if this detection phase is separated in time 
from the multi-watt rf burst phase. More importantly, 
as we shall see, it is much easier to sort out the various 
relaxation effects in pulse nmr experiments. The present 
experiment demonstrates the essential process common 
to all NMR techniques: the detection and interpretation 
of the effects of a known perturbation on a system of mag­
netic dipoles embedded in a solid or liquid. In addition, 
the effects of perturbations caused by the embedding ma­
terial yield interesting information about the structure of 
the material. 

4. CLASSICAL PICTURE OF SPIN DYNAMICS 

One can describe the dynamics of a particle with spin 
in a magnetic field by drawing an analogy with a gyro­
scope in a gravitational field. The spin vector precesses 
about the field direction and then, as energy is trans­
ferred to or from the particle, the angle between its spin 
axis and the field axis gradually changes. This latter 
motion is called nutation. 

The trouble with the gyroscope analogy would appear 
to be that an individual spin which obeys quantum me­
chanics cannot nutate continuously, since its projection 
on the field direction is quantized. Bloch, in 1956, pro­
posed a vector model in which he showed that although 
nuclear spins obey quantum laws, the ensemble average 
taken over a large number of spins behaves like a classical 
system, obeying the familiar laws of classical mechanics. 
Thus one can gain significant insight by a classical anal­
ysis of a spinning rigid magnetized body in a magnetic 
field. 

Following the discussion given by [4], we consider the 
motion of a nucleus with angular momentum I�� and mag­
netic moment µ� = γ�I� in a magnetic field B = B0 + B1 

composed of a strong steady component B0k̂ and a weak 
oscillating component B1 sin(ωt)̂ı perpendicular to B0, 
where ı̂, j,̂ k̂ are the unit vectors in the laboratory ref­
erence frame xyz. The quantity γ is called the gyro­
magnetic ratio. (In the present experiment the strong 
steady field has a magnitude of several kiloGauss; the 
weak oscillating field is the field inside a small solenoid 
2 cm long, wound with 10 turns, and connected to a 
crystal-controlled fixed-frequency generator and wide-
band power amplifier producing an rf alternating current 
with a peak amplitude of ∼ 1 ma at 5.00 x 106 Hz. A 
simple calculation will confirm that under such condi­
tions B1 � B0). The equation of motion of the particle 
is 

dI�
= γI�× B� (3)

dt 

If B1 = 0, the motion in a reference frame fixed in 
the laboratory is a rapid precession of the angular mo­
mentum about the direction of B�0 (the z axis) with the 
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Larmor precession frequency γB0, as shown in one of the 
preparatory questions. To understand the perturbing ef­
fects of the small-amplitude oscillating field on the mo­
tion we first represent it as the vector sum B�1 = B�r + B�l 

of two counter-rotating circularly polarized components 
given by the equations 

B�r = 2
1 (B1 cos ωt ı̂ + B1 sin ωt ĵ) (4)

B� l = 12 (B1 cos ωt ı̂ − B1 sin ωt ĵ), 

where the subscript l denotes the component rotating 
in the direction of rapid precession (the proton precesses 
in the left hand direction as can be seen by solving Eq. 3, 
and r denotes the component rotating in the opposite 
direction. 

Next we consider the situation from the point of view 
of an observer in a reference frame x�y�z� rotating in the 
direction of precession with angular velocity ω and unit 
vectors 

ı̂� = cos ωt ı̂ + sin ωt ĵ  
ĵ� = − sin ωt ı̂ + cos ωt ĵ  (5) 
k̂� = k̂. 

In this rotating frame B�r is a constant vector (B1/2)̂ı�, 
B� l is rotating with angular velocity −2ω, and the rapid 
precession will have angular frequency γ(B0 − ω/γ), as 
though the particle were in a field whose z component 
is B0 plus a fictitious field in the opposite direction of 
magnitude ω/γ. Suppose now that ω is adjusted so that 
ω = γB0. Then the rapid precession will vanish, i.e. 
its frequency in the rotating frame will be zero, and the 
particle will precess slowly about the direction of the 
steady field (B1/2)̂ı� with angular velocity γB1/2, with 
only a tiny flutter averaging to zero due to the counter-
rotating component. If I is initially parallel to B0 (quan­
tum mechanics not withstanding to the contrary), then 
in time π/(γB1) the spin direction will precess exactly 
90◦, putting I in the x�y� plane, perpendicular to B0. If 
the oscillating field is now turned off, the particle will be 
left with its magnetic moment in the x�y� plane and, from 
the point of view of an observer in the laboratory frame, 
it will be rotating in the xy plane with angular frequency 
γB0 about the z direction. 

According to the Bloch theorem, the result of this clas­
sical treatment of the motion of a single magnetized spin­
ning body is actually valid for an ensemble of quantized 
magnetic moments. Consider such a sample containing 
protons (hydrogen nuclei) placed between the poles of the 
magnet. According to the Boltzman distribution law, if 
the sample is in thermal equilibrium at temperature T, 
then the ratio of the number of protons n+ with z compo­
nents of spin up to the number with z components down 
is 

n+/n− = exp(E+ −E−)/kT = expµpB0 /kT , (6) 
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where µp is the magnetic moment of the proton. At 
room temperature in a field of several kilogauss this ra­
tio is only slightly greater than one, which means that 
the magnetization due to alignment of the proton mo­
ments in the z direction is very slight. Nevertheless, if 
the ensemble is rotated 90 deg by application of an rf field 
under the conditions described above for just the correct 
amount of time (a “ 90 deg rf burst”), then the nuclear 
magnetization will end up in the plane perpendicular to 
B0 and precess with angular velocity γB0 about the z 
direction. The precessing magnetization creates an al­
ternating magnetic flux in the solenoid which, according 
to Faraday’s law, induces an rf voltage. This rf voltage 
can be readily detected after the rf burst has been ter­
minated, thereby proving that the resonance condition 
was achieved and that the applied frequency was equal 
to or very close to the precession frequency of the pro­
tons. Knowledge of the field strength and the resonance 
frequency allows the determination of the gyromagnetic 
ratio of the proton, which is a measurement of funda­
mental importance in nuclear physics. 

To detect the nuclear-induced rf signal of angular fre­
quency γB0 that appears across the terminals of the 
solenoid immediately after the 90 deg rf burst, it is mixed 
with a steady signal of frequency ω from the fixed oscil­
lator to produce a beat signal of comparatively low fre­
quency |γB0 − ω| which can be observed directly on an 
oscilloscope. Of course, if ω is adjusted to be precisely 
equal to γB0, as in the above discussion, then the beat 
frequency is zero and the output is a dc voltage propor­
tional to the sine of the difference in phase between the 
induced signal and the reference voltage. In this mode 
the rf mixer becomes a phase detector. The 90◦ rotation 
of magnetization still works even if ω is slightly off the 
resonant condition, in which case the beat signal is read­
ily observed. However, it doesn’t last forever. It decays 
because of three distinct effects: 

1. The field of the magnet is not perfectly uniform so 
that the protons in different parts of the sample 
precess at slightly different frequencies and get out 
of phase with one another, thereby gradually de­
creasing the net magnetization of the sample. This 
effect, although physically the least interesting, is 
always the dominant effect. 

2. Protons in any given substance are generally lo­
cated in several different molecular environments 
in each of which the precession frequency will be 
perturbed in a slightly different amount by mag­
netic dipole interactions. As in 1) the result is a 
gradual loss of phase coherence and a decay of the 
resultant magnetization. 

3. Electromagnetic interactions between the protons 
and the surrounding particles cause transitions be­
tween the spin up and spin down states whose co­
herent combination is manifested as magnetization 
rotating in the xy plane. The result is a gradual 
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FIG. 1: The Free Induction Decay. 

decay of these coherent combinations and a return 
to the state of thermal equilibrium in which the 
magnetization is in the z direction and therefore no 
longer capable of inducing a signal in the solenoid. 

The oscillatory induced signal modulated by a decay­
ing exponential Figure 1 is referred as the Free Induction 
Decay (FID.) An excellent reference describing these re­
laxation effects is given in [? ] and is available from the 
Junior Lab e-library. 

4.1. Spin-Lattice Relaxation Time, T1 

Effect number 3) is thermal relaxation, and its rate is 
an interesting measure of the coupling of the protons to 
their environment. It is characterized by a time constant 
denoted by T1, called the spin-lattice or longitudinal re­
laxation time. T1 is the lifetime of the spins in a given 
energy state and is equal to the time constant for the ex­
ponential return to the Boltzmann distribution after the 
Z-component of the magnetization has been disturbed 
from equilibrium. This decay process is governed by the 
ease with which the nuclei are able to give up their energy 
to their surroundings. In effect, spin-lattice relaxation is 
a cooling process; an even population distribution im­
plies an infinite temperature and as cooling occurs, after 
the pulse, the temperature falls, allowing the excess pop­
ulation to return to its equilibrium state. Transfer of 
energy from the spins to the lattice requires that there 
be a fluctuating magnetic field with Fourier components 
vibrating near the Larmor precession frequency in order 
to induce NMR transitions. The field originates from 
magnetic dipoles which are in thermal agitation. 
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4.2. Spin-Spin Relaxation Time, T2 

Fig. 1 characterizes the FID. T2 
∗ is the name given to 

the observed value of the decay constant, and is the time 
for the transverse magnetization to decrease to 1/e of the 
value it had immediately after the pulse. This normally 
observed consists of two components 

1/T2 
∗ = 1/T2 + γΔH0 (7) 

where T2 is the spin-spin, or transverse relaxation time 
and ΔH0 is the inhomogeneity of the magnetic field over 
the sample volume. The second term on the right is 
always larger than 1/T2 and is sometimes referred to in 
the literature as 1/T2

�. 
Effect number 2) above is characterized by T2. It is the 

basis for the powerful method of pulsed NMR chemical 
analysis based on measurement of the various perturbed 
precession frequencies due to the various locations of the 
protons within the molecule. Given the spectrum of these 
frequencies for a new complex organic compound, an ex­
pert can practically write out the chemical formula. The 
time it takes for the transverse magnetization to die out 
after a sample is perturbed by an rf pulse is a measure of 
this process. As we discussed above, a 90◦ pulse leaves 
the sample with a net magnetization that lies in the x-y 
plane and precesses about the z axis. With the passage of 
time, the magnetic moments interact with one another, 
and lose their phase coherence in the x-y plane. This 
process does not involve the loss of any energy from the 
spin system. 

In many cases, the same physical mechanisms deter­
mine T1 and T2 so that they are equal. The cases of 
interest are those where there are additional mechanisms 
for spin-spin relaxation such that T2 is shorter than T1. 
After a 90◦ pulse all phase coherence may be lost be­
fore any substantial z magnetization is recovered. The 
transverse magnetization, and thus also the rf voltage in­
duced in the sample coil, fall off as the phase coherence 
is lost. The dominant effect of magnet inhomogeneity, 
which could be fatal for such precision measurements, 
can be virtually eliminated by the remarkable invention 
of Hahn who discovered the phenomenon of “spin echoes” 
[5, 6]. 

4.3. Spin Echoes 

To see how a spin echo is produced, consider a typi­
cal sample which has an enormous number of protons, of 
the order of 1023 . They can be divided into millions of 
ensembles, each one of which consists of a still enormous 
number of protons in a region where the external field 
has values within a very narrow range. Each ensemble 
will have a certain net magnetization which contributes 
to the total magnetization, but each such magnetization 
will precess with a slightly different frequency and there-
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FIG. 2: The NMR signal observed when the applied rf fre­
quency is offset slightly from the Larmor frequency. The fast 
oscillations corresponds to the beat between the two frequen­
cies. 

fore gradually get out of phase with respect to the oth­
ers. Suppose that after a decent interval a second rf burst 
of double duration, i.e. a 180◦ burst, is applied to the 
sample. The magnetization of each ensemble will be pre­
cessed through 180◦, ending back in the xy plane where 
it will resume its precession motion. But now the accu­
mulated phase differences between the various ensembles 
are all precisely reversed. Those that were ahead of the 
average are now behind by the same amount, and as the 
precession proceeds, the dephasing of the ensembles is 
gradually reversed. After precisely the same time inter­
val τ all the ensembles are back in phase, the total mag­
netization reaches a maximum, and a “spin echo” signal 
is induced in the solenoid. The amplitude of the echo is 
usually smaller than that of the original FID. There will 
be some loss in magnitude of the magnetization due to 
thermal relaxation and the effects of random fluctuations 
in the local fields that perturb the precession of the nu­
clear moments and it is precisely the relaxation time of 
this loss that we wish to measure. The spin-echo method 
enables one to eliminate the otherwise dominant effects 
of the nonuniformity of the magnetic field. If the two-
pulse sequence is repeated for several different values of 
τ , the height of the echo should vary as exp(−t/T2). 

A necessary assumption implied in the spin-echo tech­
nique is that a particular spin feels the same constant 
magnetic field before and after the “refocusing” 180◦ 

pulse. If, because of Brownian motion, a spin has dif­
fused to a different region of magnetic field before the 
echo, then that spin will not be refocused by the 180◦ 

pulse. This is often the case for non-viscous liquids and 
will result in a decay of echoes which is not quite expo­
nential and somewhat faster than that observed in vis­
cous liquids. The Carr-Purcell technique, described 
in [7, 8] and summarized below, elegantly addresses this 
difficulty. The section of this lab guide entitled “measure­
ments” will ask you to take data to measure the apparent 
T2 for two samples (e.g. a viscous sample such as glycer­
ine and a non-viscous one such as Fe+++ doped H2O) to 
compare with later measurements taken from the same 
samples by the Carr-Purcell technique. 
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4.4. The Measurement of T1 

4.4.1. 90◦ − 90◦ 

As mentioned above, the spin-lattice relaxation time 
can be measured by examining the time dependence of 
the z magnetization after equilibrium is disturbed. This 
can be done by saturating the spins with a 90◦ pulse, so 
that the z magnetization is zero. Immediately after the 
first pulse one should be able to observe a free induc­
tion decay (as in Fig.1) whose amplitude is proportional 
to the z-magnetization just before the pulse. One then 
waits a measured amount of time, t, so that some mag­
netization has been reestablished, and then applies a 90◦ 

pulse to the recovering system. The second 90◦ pulse will 
rotate any z magnetization into the x-y plane, where it 
will produce a FID signal proportional to the recovered 
magnitude it had just before the second pulse. If the 
two-pulse sequence is repeated varying the time between 
the 90◦ pulses the amplitude of the FID as a function of 
t will give the value of T1. 

4.4.2. 180◦ 90◦− 

Another sequence, the 180◦ − τ − 90◦, is also used. 
A 180◦ pulse is applied to the equilibrium system, caus­
ing the population of the states to be precisely inverted, 
and thus leaving the x − y magnetization at zero. In this 
case, there should be little or no FID immediately after 
the first pulse. The system is then allowed to approach 
equilibrium for a specified delay, after which a 90◦ pulse 
is applied to rotate the partially recovered z magnetiza­
tion into the x − y plane. The magnitude of the FID 
gives a measure of the size of the magnetization which 
can be plotted against the delay to give the exponential 
time constant. In this case, the magnetization actually 
reverses going through zero at time T1ln2. 

4.4.3. 180◦ − τ − 90◦ 180◦ 

It was mentioned earlier that it is experimentally much 
easier to detect the extremely small effects of transi­
tions if they are separated in time from the multi-watt 
rf bursts. Unfortunately, the usual ”Inversion Recovery” 
method requires observation of the FID immediately af­
ter the second rf pulse. This problem was addressed sev­
eral years ago by two Junior Lab students[19] who pro­
posed the ”Three-Pulse” sequence[9]. See Figure 3 for a 
sample data set using this technique. 

[19] Both of these students, Rahul Sarpeshkar and Isaac Chuang, are 
now M.I.T. professors. Creativity in Junior Lab is one indicator 
of future success in science! 

FIG. 3: An example data set using the “Three-Pulse” tech­
nique with the oscilloscope set to infinite-persist. 

The first pulse (180◦) inverts the population along the ­
Z axis as in the normal Inversion-Recovery method. After 
a delay of t the second and third pulses can be understood 
as a normal 90-T-180 sequence which is used to measure 
the fraction of spins which are in the | + z > state at the 
moment that the pulses are applied. The time between 
the second and third pulses is kept small to minimize T2 

effects. The amplitude of the echo is therefore related to 
the amount of T1 decay (or recovery) during t and will 
have the form A(1 − 2 ∗ e(−t/T 1)). 

The three experiments mentioned so far, (i.e. the spin-
echo, the 90◦ − 90◦ and the 180◦ − 90◦ sequences) have 
each been performed successfully many times in this lab. 
However each has its intrinsic difficulties leading to var­
ious modifications which will be discussed. 

5. EXPERIMENTAL APPARATUS 

This experiment uses a permanent magnet whose field 
is 1770 gauss (0.177 Tesla). Care should be taken to 
avoid bringing any magnetizable material (such as iron 
or steel) near the magnet as this may be pulled in and 
damage the magnet. 

The experimental apparatus, shown in Figure 4 con­
sists of a gated rf pulse generator with variable pulse 
widths and spacings, a probe circuit that delivers rf power 
to the sample and picks up the signal from the sample, 
a preamp that amplifies the signal, and a phase detector 
which outputs an audio signal whose frequency corre­
sponds to the difference between the Larmor frequency 
and the frequency of the signal generator. Details of how 
to design and build NMR probes can be found in [10]. 

The rf pulse generating system is made up of a 15 
MHz frequency synthesizer ( Agilent 33120A), a digital 
pulse programmer based on a STAMP microcontroller, 
a double-balanced mixer used as an rf switch (Mini-
Circuits ZAS-3), a variable attenuator, and an rf power 
amplifier capable of 2 watts output. 

The frequency synthesizer feeds a +10dBm RF sine 
wave to the power splitter . The power splitter keeps all 
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FIG. 4: The Experimental Setup. The magnet and the probe circuit are not shown 

impedances appropriately matched while feeding one half 
of the RF power to a double-balanced mixer (DBM) used 
as a gate for the RF. The other half is used as a refer­
ence signal in the phase detector. The gate is opened and 
closed by TTL pulses provided by the digital pulse pro­
grammer. After the the switching stage, the RF pulses 
pass into a constant-gain (+33 dBm) RF power ampli­
fier. The power amplifier feeds the amplified pulsed RF 
into the probe circuit. 

The signal out of the sample, as well as a considerable 
amount of leakage during pulses, comes out of the probe 
circuit, and is amplified by a sensitive preamp (Tron-
Tech W110F). The signal then goes into a phase de­
tector (Mini-Circuits ZRPD-1), where it is mixed with 
the reference signal coming out of the other port of the 
power splitter. Since the NMR signal is, in general, not 
precisely at the frequency of the transmitter, when the 
two signals are mixed, a signal is produced at the differ­
ence frequency of the resonance signal and the applied 
rf. Since we are looking at NMR signals in the vicinity of 
1-8 MHz, mixing this down to a lower frequency makes 
it easier to see the structure of the signal. 

5.1. The probe circuit 

PreamplifierProbehead
Cm

Ct

FIG. 5: Schematic of the probehead circuit. 

The probe circuit is a tuned LC circuit, impedance 
matched to 50 ohms at the resonant frequency for effi­
cient power transmission to the sample. The inductor L 
in the circuit is the sample coil, a ten turn coil of #18 
copper wire wound to accommodate a standard 10mm 
NMR sample tube. The coil is connected to ground at 
each end through tunable capacitors Cm and Ct, to allow 
frequency and impedance matching. Power in and signal 
out pass through the same point on the resonant circuit, 
so that both the power amplifier and the signal preamp 
have a properly matched load. Between the power am­
plifier and the sample is a pair of crossed diodes, in se­
ries with the probe circuit from the point of view of the 
power amplifier. By becoming non-conducting at low ap­
plied voltages, these serve to isolate the probe circuit and 
preamp from the power amplifier between pulses, reduc­
ing the problems associated with power amplifier noise, 
but they pass the high rf voltages that arrive when the 
transmitter is on. The signal out of the probe circuit 
passes through a quarter-wavelength line to reach an­
other pair of crossed diodes, which go directly to ground, 
at the input of the preamp. The diodes short the preamp 
end of the cable when the transmitter is on, causing that 
end of the cable to act like a short circuit. This helps to 
protect the delicate preamp from the high rf power put 
out by the power amplifier. Any quarter-wave transmis­
sion line transforms impedance according to the following 
relation: 

Zin = Z0
2/Zout (8) 

where Z0 = the characteristic impedance of the line. 
Therefore during the rf pulse, the preamp circuit with 

the quarter-wave line looks like an open circuit to the 
probe and does not load it down. Between pulses, the 
voltage across the diodes is too small to turn them on, 
and they act like an open circuit, allowing the small NMR 
signal to pass undiminished to the preamp. 
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FIG. 6: The Pulse Programmer Interface. 

6. EXPERIMENTAL PROCEDURE 

Although it is the policy in Junior Lab to discour­
age the use of pre-wired experiments, there are two 
reasons why the present set-up should not be (lightly) 
changed. Several of the components, particularly the 
double-balanced mixers (DBM) and the low-level TRON­
TECH pre-amplifier, are easily damaged if the rf power 
level they are exposed to exceeds their specified limit. 
Furthermore, the lengths of some of the cables have been 
specially selected to fix the relative phase relationship of 
different signals. 

Most of the controls that you will manipulate are on 
the digital pulse programmer, the oscilloscope or the 
function generator. The keypad of the Digital Pulse Pro­
grammer is shown in Figure 6. Press any of the four 
buttons on the right and then use the arrow buttons to 
set the corresponding time. The default times are: First 
Pulse Width (PW1) = 24µs, Second Pulse Width (PW2) 
= 48µs, τ = 2ms, Repeat Time = 100ms. The first two 
buttons on the left determine whether the two-pulse se­
quence occurs only once or repeats continuously 10 times 
sec−1 (or at a different repeat time if you change this pa­
rameter). 

Set the delay, τ , to the minimum position and observe 
the amplified rf pulses from the port marked “transmit­
ter” on channel two of the oscilloscope. The pulses should 
be approximately 20-30 volts peak-to-peak. Choose the 
slowest possible sweep speed which will enable both 
pulses to be viewed simultaneously. A good starting pair 
of pulse-widths might be 24 µs and 48 µs corresponding 
to approximately 90◦ and 180◦. Now switch to chan­
nel one which displays the output of the phase detec­
tor (through the low-pass filter). Incidentally, there is 
another low-pass filter which is part of the scope itself. 
On the Tektronix analog scope there is a button marked 
“BW limit 20 MHz”. This button should be pressed in 
(active). On the HP digital scope the BW limit is set 
by one of the soft keys. Set the y-sensitivity to about 10 
mV/div at first. Channel one will display the nmr signal. 
Place the glycerine vial in the probe and place the probe 
in the magnet. Now the fun begins!! 

Refer to Figure 2 which is a highly stylized version of 

Id: 12.nmr.tex,v 1.92 2007/10/26 14:16:55 sewell Exp sewell 7 

the signals you might obtain. The form of the voltage 
displayed during the two bursts is unimportant. You will 
be focusing your attention on the (FID) signals which 
appear after each burst and on the echo. For five or ten 
microseconds after the rf pulse the amplifier is still in 
the recovery phase and this part of the signal should be 
ignored. 

6.1. Free Induction Decay (FID) 

As mentioned above, the oscillations following the first 
pulse represent a beat between the applied rf frequency 
and the Larmor frequency. Since the latter is propor­
tional to B0, you should see high-frequency oscillations 
as you raise ω from below the resonance condition. They 
will spread out in time, pass through a zero-beat condi­
tion and then begin to increase in frequency again as the 
field continues to increase. These oscillations with their 
exponentially decaying envelope is referred to as the Free 
Induction Decay (FID). 

6.2. Setting Pulse Widths 

It is sometimes easiest to set the pulse widths with the 
magnetic field slightly off resonance so that the FID is 
well displayed. The size of the FID should be maximum 
after a 90◦ or 270◦ pulse, minimum or zero after a 180◦ 

pulse. It is usually easiest to set the pulse-width to 180◦ 

by minimizing the FID. Then, if you want a 90◦ pulse, 
reduce the pulse-width in half. 

You have four or more degrees of freedom: these in­
clude the widths of each of the two pulses, the delay 
between the pulses, and the frequency of the applied cur­
rent. Experiment with all of them. Look for free induc­
tion decays (FID); vary the FID so that you get varying 
amounts of oscillations (beats) and try to explain the 
beats. Once you find oscillatory FID’s, move the probe 
slightly between the pole pieces of the magnet in a di­
rection perpendicular to the magnetic field. Explain the 
changes you see. Use these changes to find the most 
homogeneous position in the field, then leave the probe 
there for the remainder of the experiment. Measure T2 

∗ 

. Using various combinations of 90◦ and 180◦ rf pulses, 
obtain data from which you can determine T1 and T2 in 
several samples (see section entitled “Measurements”.) 

6.3. The Carr-Purcell Experiment 

As mentioned above, if diffusion causes nuclei to move 
from one point of an inhomogeneous magnetic field to 
another in a time less than 2τ , the echo amplitude is 
reduced. It can be shown that the echo amplitude for a 
pulse separation τ is 



8 

FIG. 7: The Carr-Purcell pulse and echo sequence 

2 
E(2τ ) = E(0) exp[−(2τ/T2) − ( )γ2G2Dτ 3] (9)

3 

where G is the gradient of the inhomogeneous field and 
D is the diffusion constant. Because of the τ3 dependence 
the effects of diffusion are pronounced for large values of 
t and thus affect the measurement of long T2’s. Carr 
and Purcell [7] introduced a pulse sequence which can 
be described as follows: π/2, τ, π, 2τ, π, 2τ, π, 2τ ... (i.e. 
90 deg pulse at time 0, followed by 180 deg pulses at times 
τ, 3τ, 5τ , etc.) Echoes will be observed at times 2τ, 4τ, 6τ , 
etc. 

When you are ready to do a Carr-Purcell, set up the 
pulse width and magnetic field first with a two-pulse spin 
echo and then switch to the Carr-Purcell. The picture 
should resemble Figure 7. 

7. MEASUREMENTS 

7.1. Magnetic Moments of Hydrogen and Fluorine 

With this apparatus, we can measure the magnetic 
moments of two nuclei: the proton 1H and the Fluo­
rine nucleus 19F . One of the strongest signals is due to 
hydrogen in glycerine. Once you have obtained a good 
resonance, remove the sample and replace it with the 
transverse probe of the Hall Gaussmeter. From the mag­
netic field strength (1770 gauss=0.177 Tesla) and the 
measured frequency you can calculate the magnetic mo­
ment. Repeat the measurement for fluorine using the tri­
fluoric acetic acid sample or the hexafluorobenzene (You 
may wish to consult the CRC or another source to get 
an idea of what resonant frequency you are looking for). 
The former is a strong acid and should be handled with 
extreme care. Before looking for the fluorine resonance, 
move the knob on the probe circuit in the magnet to 
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point to “FLUORINE”. Also note that the T1 relaxation 
time for our fluorine sample is long and if you use the de­
fault (100 ms) repetition rate of the pulse sequence, the 
observed signal will be small! Finally, be creative with 
the pulse programmer... by setting pw2 = 1µs you can 
effectively create a one pulse sequence... 

7.1.1. Relaxation constants for Water 

In the case of water, the relaxation times ( T1 equals 
T2 for most non-viscous liquids) is of the order of several 
seconds. The measurement of T2 is quite difficult but the 
equivalent measurement of T1 can be done as follows: 

Set up a 90◦ − 180◦ echo sequence with the shortest 
possible delay between pulses. As mentioned above, one 
must usually wait at least 5 times T1 between successive 
repeats of this pulse sequence to allow sufficient time for 
equilibrium to be re-established. If less time is taken, the 
echo signal is diminished. Taking advantage of this fact, 
one can vary the repeat rate and plot the echo height 
against the repeat time. For times less than about 3 s. 
you can read this repeat time from the small numerical 
display on the scope (push the button marked “per”). 
For slower rates switch to the manual (“one-shot”) mode 
and use your watch to wait a specified amount of time in 
between pulses. Repeat the measurement for both tap-
water and distilled water. 

The first measurements of T1 in distilled water stood 
for about thirty years. Since then careful measurements 
have produced a number which is about 50% higher. The 
difference is due to the effect of dissolved oxygen in the 
water (O2 is paramagnetic). As an optional experiment, 
you might try to carefully remove the dissolved oxygen 
from a sample of distilled water. Bubbling pure nitrogen 
through the water will work as will other methods in the 
literature. A challenging question which you might dis­
cuss in your oral examination is why O2 is paramagnetic 
while N2 is diamagnetic. 

7.1.2. Effects of Paramagnetic ions. 

An extremely small amount of any substance with un­
paired electron spins has a very dramatic effect of reduc­
ing T1. There is a bottle of Fe(NO3)3.9H20 in the lab. 
The solution has been diluted to a strength of 0.17M 
corresponding to 1020 Fe+++ ions/cc. Start with a sin­
gle drop of this solution in a test tube. Dilute it with 9 
drops of tap water. Measure both T1 and T2. Take a 
single drop of your diluted solution and dilute it again 
by a factor of 10. You should be able to repeat the mea­
surement over several decades in concentration. Plot the 
relaxation times versus concentration on log-log paper. 
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FIG. 8: The viscocity of water-glycerine mixtures. From 
http://www.dow.com/glycerine/resources/table18.htm 

7.1.3. Effect of Viscosity. 

It has been shown that the major contribution to both 
T1 and T2 processes comes from the fluctuating dipo­
lar fields of other nuclear (and unpaired electron ) spins 
in the immediate region. Only those fluctuations which 
have a sizeable Fourier component at the Larmor fre­
quency can affect T1, but spin-spin relaxation is also sen­
sitive to fluctuations near zero frequency. It is for this 
reason that viscous liquids (whose fluctuations have a 
sizeable low-frequency component) exhibit a T2 less than 

[20] Recall that viscocity of a fluid, designated η is defined as the 
ratio fo the shear stress placed on a fluid to the resultant strain 
rate. η = F/A 

From the units, one can see that the SI units must 
v/l 

be 1 Ns 
2 = 1Pa s It is much more common however to see the 

m

corresponding ‘cgs’ unit 1poise = 1 dyn 
2 

s = 0.1Pa s. From the 
m

Id: 12.nmr.tex,v 1.92 2007/10/26 14:16:55 sewell Exp sewell 

T1. You will find a series of samples of glycerine-water 
mixtures in different ratios. Each will be marked with 
its viscosity[? ]. Measure T2 by the Carr-Purcell method 
and T1 by the 180◦ −90◦ method, the three-pulse method 
or the method suggested in paragraph 1 of this section. 
With the aid of Figure 8, compare your results with those 
found in the extraordinary thesis of Bloembergen [11] 
started in the year that NMR was discovered. 

8. SUPPLEMENTAL QUESTIONS 

Each of the magnetic moments in a sample is influ­
enced by the magnetic fields of other moments in its 
neighborhood. These differ from location to location in 
the sample, depending on the relative distance and ori­
entation of neighbor moments to one another. An ap­
proximate measure of the magnetic field variation expe­
rienced by the proton moments in the water molecule is 
the range corresponding to parallel alignment of two in­
teracting protons at one extreme to opposite alignment 
at the other. 

1. Using µ/r3 for the field of the neighbor moment, 
show that the half-range in the Larmor precession 
frequencies is given by Δω ≈ (gµn)2/hr3 . 

2. The return to normal of the transverse distribution 
of the protons following resonance occurs as mo­
ments with different precession frequencies become 
more and more randomly orientated in the preces­
sion angle. Estimate the transverse relaxation time 
T2 for the water sample by finding the time re­
quired for two moments, differing by the average 
Δω calculated in part a., to move from in-phase to 
π-out-of-phase positions. 

As you’ve probably guessed, this lab is merely a step­
ping off point for an incredibly varied set of potential 
investigations. Some good general referneces for this lab 
(beyond the ones already cited in the text) are [12–18]. 

table one can see that the viscocity of water is 1.79 x 10−2 poise 
at 0◦ which falls to 2.838x10−3 poise at 100◦. For comparison, 
the viscocity of air at 20◦ is 181 x 10−6 poise and the viscocities 
of lubricating oils are typically 1-10 poise. 
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APPENDIX A: QUANTUM MECHANICAL

DESCRIPTION OF NMR


Recall that for all spin-1/2 particles (protons, neu­
trons, electrons, quarks, leptons), there are just two 
eigenstates: 

1 1 
spin up ⇒ |ml,ms� = | 

2 
, 
2 
� =⇒ |0� (A1a) 

spin down ⇒ |ml,ms� = | 
2
1 
, 
−
2
1 � = ⇒ |1� (A1b) 

where the simplified abbreviations for these two states 
are noted. Using these as basis vectors, the general state 
of a spin-1/2 particle can be expressed as a two-element 
column matrix called a spinor. 

|ψ = u|0� + d|1� = 
u
d (A2) 

where normalization imposes the constraint that |u|2 + 
d 2 = 1. | |

The physics is governed by the Time Dependent 
Schrödinger Equation: 

d 
i� 
dt 
|ψ� = H|ψ� (A3) 

which has the solution |ψ(t)� = U |ψ(t = 0)�, where U = 
e−iHt/� is unitary. In pulsed NMR, the Hamiltonian 

H = −µ� B�	 (A4)· 
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is the potential energy of a magnetic moment placed in 
an external magnetic field. In matrix representation this 
is 

H = −µ[σxBx + σyBy + σzBz ] (A5) 

where the Pauli spin matrices, 

σx 
0 1 

σy ≡ 
0 −i

σz 
1 0 (A6)≡ 1 0 i 0 ≡ 0 −1 

are ‘spin operators’ or ‘generators’ of unitary transfor­
mations. Inserting Eqs.A6,A2 and Eq.A5 into Eq.A3: 

d u u̇
i� = i�	 (A7)
dt d ḋ 

�� � � � � � � � � 
0 1 0 −i 1 0 u = −µ 1 0 Bx + 

i 0 By + 0 −1 Bz d 
(A8) 

�� � � � � � � 

= −µ 
u
d

Bx + 
−
i
i
u
d 

By + −
u
d Bz (A9) 

The equations of motion then become: 

u̇ = iµBxd + µByd + iµBz u 

= µ [iBx + By] d + iµBzu (A10) 

ḋ = µ [iBx − By] u − iµBz d (A11) 

If Bz = 0 and � Bx = By = 0 and the equations reduce to 

u̇ = iµBz u	 (A12) 

ḋ = −iµBz d (A13) 

Integrating with respect to time yields 

u = u0e
iµBz t = u0e 

iω0t (A14) 
d = d0e

−iµBz t = d0e
−iω0t (A15) 

where 

ω0 = 
µBz	 (A16) 

is the Larmor Precession Frequency. If an atom 
undergoes a spin-flip transition from the ‘spin-up’ state 
to the ‘spin-down’ state, the emitted photon has energy 
E = 2ω0�. 

Now let’s add a small external magnetic field Bx but 
still keeping By = 0 and such that Bx � Bz. Eqn. A11 
becomes: 

u̇ = iµBxd/� − iµBzu/� (A17) 

ḋ = iµBxu/� + iµBzd/� (A18) 
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For a time varying magnetic field of the type produced 
by an ‘RF-Burst’ as in pulsed NMR, Bx = Bx0 cos ωt 
where cos ωt = eiωt + e−iωt /2 from Euler’s Theo­
rem. Now, we can see that 

u̇ = −iω0u + iωx/2 e iωt + e−iωt d (A19) 

ḋ = iω0d + iωx/2 
� 
e iωt + e−iωt

� 
u (A20) 

Using ωx � ω0 since Bx � B0. 
We can try for a solution of the form 

u = Cu(t)e−iω0t (A21) 
d = Cd(t)e iω0 t (A22) 

From this general form, use the Chain Rule to deter­
mine u̇ and ḋ. Note that the terms Cu and Cd drop out 
as they appear on both sides and then, dividing by e−iωot 

yields: 

Ċ 
u = 

iωx 
Cd e 

i(ω−2ω0)t + e−i(ω−2ω0)t (A23)
2 

Ċ 
d = 

iωx 
Cu e 

i(ω−2ω0)t + e−i(ω+2ω0 )t (A24)
2 

Now we use the approximation ω � ω0 to show that 
the leading terms are very small. If we run at resonance 
(ω = 2ω0): 

Ċ 
u = 

iωx 
Cd (A25)

2 

Ċd = − 
iω

2 
x 
Cu (A26) 

Taking the next derivatives, we can demonstrate that 
these coefficients act like harmonic oscillators � �2 

C̈  
u + 

ωx 
Cu = 0 (A27)

2 

C̈  
d + 

� ωx 
�2 
Cd = 0 (A28) 

2 

This harmonic oscillator equation has the general solu­
tion 

Cu = a cos ωt + b sin ωt (A29) 
Cd = a cos ωt + b sin ωt (A30) 

or without loss of generality 

Cu = a cos (ωxt/2) + b sin (ωxt/2) (A31) 
Cd = a cos (ωxt/2) + b sin (ωxt/2) (A32) 

Doting these solutions and solving for Cu and Cd 

Cu = a cos (ωxt/2) + b sin (ωxt/2) (A33) 
Cd = ia sin (ωxt/2) − ib cos (ωxt/2) (A34) 

Recall Eq.A22 to finally write down what are known 
as Rabi Oscillations valid for ωx � ω0. 
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u = u(t) = [a cos (ωxt/2) + b sin (ωxt/2)] e−iω0t (A35) 
d = d(t) = i [a sin (ωxt/2) − b cos (ωxt/2)] e iω0t (A36) 

The important thing to note is that a ‘spin-up’ state 
is defined as when a 1 and b 0 and the opposite for 
a ‘spin-down’ state. 

→ → 

APPENDIX B: BLOCH SPHERE 
REPRESENTATION 

A single qubit in the state a|0� + b|1� can be visualized 
as a point (θ, φ) on the unit sphere, where a = cos(θ/2), 
b = eiφ sin(θ/2), and a can be taken to be real because 
the overall phase of the state is unobservable. This is 
called the Bloch sphere representation, and the vector 
(cos φ sin θ, sin φ sin θ, cos θ) is called the Bloch vector. 

The Pauli matrices give rise to three useful classes of 
unitary matrices when they are exponentiated, the rota­
tion operators about the x̂, ŷ, and ẑ axes, defined by the 
equations: 

Rx(θ) ≡ 

= 

e−iθX/2 = cos 
θ 
2 
I − i sin 

θ 
2 
X � 

cos θ 
2 −i sin θ 

2 
−i sin θ 

2 cos θ 
2 

� 

(B1) 

Ry(θ) ≡ 

= 

e−iθY /2 = cos 
θ 
2 
I − i sin 

θ 
2 
Y � 

cos θ 
2 − sin θ 

2 
sin θ 

2 cos θ 
2 

� 

(B2) 

Rz (θ) ≡ 

= 

e−iθZ/2 = cos 
θ 
2 
I − i sin 

θ 
2 
Z � 

e−iθ/2 0 
0 eiθ/2 

� 

. (B3) 

One reason why the Rn̂(θ) operators are referred to as 
rotation operators is the following fact. Suppose a single 
qubit has a state represented by the Bloch vector �λ. Then 
the effect of the rotation Rn̂(θ) on the state is to rotate 
it by an angle θ about the n̂ axis of the Bloch sphere. 
This explains the rather mysterious looking factor of two 
in the definition of the rotation matrices. 

An arbitrary unitary operator on a single qubit can 
be written in many ways as a combination of rotations, 
together with global phase shifts on the qubit. A useful 
theorem to remember is the following: Suppose U is a 
unitary operation on a single qubit. Then there exist 
real numbers α, β, γ and δ such that 

U = e iαRx(β)Ry(γ)Rx(δ) . (B4) 

APPENDIX C: FUNDAMENTAL EQUATIONS 
OF MAGNETIC RESONANCE 

The magnetic interaction of a classical electromag­
netic field with a two-state spin is described by the 
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Hamiltonian H = −µ� B� , where µ� is the spin, and· 
B = B0ẑ + B1(x̂ cos ωt + ŷ sin ωt) is a typical applied 
magnetic field. B0 is static and very large, and B1 is 
usually time varying and several orders of magnitude 
smaller than B0 in strength, so that perturbation theory 
is traditionally employed to study this system. However, 
the Schrödinger equation for this system can be solved 
straightforwardly without perturbation theory, in terms 
of which the Hamiltonian can be written as 

H = 
ω0 
Z + g(X cos ωt + Y sin ωt) , (C1)

2 

where g is related to the strength of the B1 field, and 
ω0 to B0, and X,Y, Z are the Pauli matrices as usual. 
Define |φ(t)� = eiωtZ/2|χ(t)�, such that the Schrödinger 
equation 

i∂t|χ(t)� = H|χ(t)� (C2) 

can be re-expressed as 

i∂t|φ(t)� = eiωZt/2He−iωZt/2 − 
ω 
2 
Z |φ(t)� . (C3) 

Since 

eiωZt/2Xe−iωZt/2 = (X cos ωt − Y sin ωt) , (C4) 

(C3) simplifies to become 

i∂t|φ(t)� = 
ω0 

2
− ω

Z + gX |φ(t)� , (C5) 

where the terms on the right multiplying the state can be 
identified as the effective ‘rotating frame’ Hamiltonian. 
The solution to this equation is » – 

|φ(t)� = e 
i ω0

2
−ω 

Z+gX t 
|φ(0)� . (C6) 

The concept of resonance arises from the behavior of 
this solution, which can be understood to be a single 
qubit rotation about the axis 

ẑ + 2g x̂
n̂ = � � 

ω0−ω �2 
(C7) 

1 + 2g 
ω0−ω 

by an angle � �2 

|�n| = t
ω0 

2
− ω 

+ g2 . (C8) 

When ω is far from ω0, the spin is negligibly affected 
by the B1 field; the axis of its rotation is nearly parallel 
with ẑ, and its time evolution is nearly exactly that of the 
free B0 Hamiltonian. On the other hand, when ω0 ≈ ω, 
the B0 contribution becomes negligible, and a small B1 

field can cause large changes in the state, corresponding 
to rotations about the x̂ axis. The enormous effect a 
small perturbation can have on the spin system, when 
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tuned to the appropriate frequency, is responsible for the 
‘resonance’ in nuclear magnetic resonance. 

In general, when ω = ω0, the single spin rotating frame 
Hamiltonian can be written as 

H = g1(t)X + g2(t)Y , (C9) 

where g1 and g2 are functions of the applied transverse 
RF fields. 

APPENDIX D: MODELING THE NMR PROBE 

The material in this appendix was provided by Profes­
sor Chuang of the MIT Media Laboratory. A tuned cir­
cuit is typically used to efficiently irradiate a sample with 
electromagnetic fields in the radiofrequency of microwave 
regime. This circuit allows power to be transferred from 
a source with minimal reflection, while at the same time 
creating a large electric of magnetic field around the sam­
ple, which is typically placed within a coil that is part of 
it. 

FIG. 9: Schematatic diagram of NMR probe circuit. The 
connector on the right goes off to the source and any detection 
circuitry. 

1. Circuit and Input Impedance 

A typical probe circuit, as shown in Figure 7, consists 
of an inductor L, its parasitic coil resistance R, a tuning 
capacitor CT , and an impedance matching capacitor Cm. 
We can analyze the behavior of this circuit using the 
method of complex impedances, in which the capacitors 
have impedance ZC = 1/jωC, inductors ZL = jωL, and 
resistors ZR = R, with ω = 2πf being the frequency in 
rad/sec, and j = 

√
−1 = i (dropping the minus sign that 

sometimes appears in EE). 
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The input impedance is thus 

Z = ZCm +
1

+ 
1 −1 

(D1)
ZCT R + ZL 

= ZCm + jωCT +
1 −1 

(D2)
R + jωL 

jRωCT + 1 − ω2LCT 
−1 

= ZCm + (D3)
R + jωL 

1 
= + 

R + jωL 
(D4)

jωC 1 + jRωCT − ω2LCT 

= 
1 + jRωCT − ω2LCT + jωRCm − ω2LCm(D5)

jωCm(1 + jRωCT − ω2LCT ) 

= 
1 + jωR(CT + Cm) − ω2L(CT + Cm) 

. (D6)
jωCm(1 + jRωCT − ω2LCT ) 

2. Tune and Match Conditions 

The resonant frequency of this circuit is set by 

1 
ω2 = , (D7)

L(CT + Cm) 

and at this frequency, the input impedance is 

R(CT + Cm)
Z0 = . (D8)

Cm(1 + jRωCT − ω2LCT ) 

We would like this impedance to be 50 ohms, because 
that is the typical impedance expected by RF or mi­
crowave sources and the coaxial cable which carries in 
the signal. Setting Z0 = 50 we obtain: 

50 CT + Cm


R 
= 

Cm(1 + jRωCT − ω2LCT ) 
(D9)


= � 
CT + Cm � (D10) 

Cm 1 + jRωCT − CT 
CT +Cm 

(CT + Cm)2 

= . (D11)
Cm [Cm + jRωCT (CT + Cm)] 

To good approximation, the jRωCT (CT + Cm) term in 
the demoniator may be neglected, giving, finally � �250 CT = 1 + . (D12)

R Cm 

The two important results give the resonant fre­
quency, Eq. (B7), and the impedance matching condi­
tion, Eq. (B12), in terms of the capacitor settings. When 
the matching condition is satisfied, then all the source 
power goes into the tuned resonator at the resonant fre­
quency, thus creating the strongest possible oscillating 
magnetic field inside the coil L. 


