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Relativistic Dynamics: The Relations Among Energy, Momentum, and Velocity of

Electrons and the Measurement of e/m 

MIT Department of Physics 
(Dated: August 24, 2007) 

This experiment is a study of the relations between energy, momentum and velocity of electrons 
moving at nearly the speed of light. Its goals are to compare the measured relations with the 
formulas of classical and relativistic dynamics, and to determine the value of e/m. 

1. PREPARATORY QUESTIONS 

1. Compare the classical and relativistic relations be­
tween energy, momentum, and velocity. 

2. The source of high-energy electrons used in this 
experiment is the radioactive isotope 90Sr and its 
decay product 90Y. Describe the decay process of 
these isotopes and the energy spectra of the elec­
trons (beta rays) they emit. 

3. How does a semi-conductor diode detector work? 
Estimate the charge of the signal from a 280 keV 
electron in Si (0.5 eV per pair) 

4. How good a vacuum is necessary for the experi­
ment? 

5. Compute the voltage required to cancel the mag­
netic force on the electrons in the velocity selector 
when the magnetic field is 110 Gauss. Assume the 
dimensions of the apparatus given in Figure 1, the 
book value of e/m, and the validity of relativistic 
mechanics. (The result will be a clue to where in 
the selector-voltage range you should search for the 
maxima in the counting rate for a typical magnetic 
field.) 

6. A velocity selector is made of two parallel plates 
separated by a distance d = 0.185 cm. Using the 
same parameters of the previous problem, a) What 
is the spread in momentum of electrons that can 
enter the selector? b) What ΔV do you need to 
pass the highest and lowest momentum? 

1.1. Units in this lab guide 

This lab guide uses Gaussian units in which the force 
on a moving charge in a static field is 

�F = q �E + 
q 
c 
(�v × �B). 

The units are: 
F —dyne 
q—statcoulomb (esu) 
B—gauss 
E—statvolts 

v,c—cm sec−1 

Some useful constants: 

e = 4.80298 × 10−10 statcoulombs 
mc 2 = 511 keV = 8.18727 × 10−7 ergs 

1 volt = 3.336 × 10−3 statvolts 

1.2. Suggested Progress Check at end of 2nd 
Session 

With the spectrometer magnetic field set to 100 gauss, 
plot the electron count rate at the detector versus veloc­
ity selector voltage (converted to units of β. Also, plot 
at least three data points of various kinematic energies 
versus β. 

2. INTRODUCTION 

Between 1900 and 1910 the relation between the en­
ergy, momentum and velocity of charged particles mov­
ing at high speeds was a central problem of physics. 
The fundamental contradictions between Newtonian me­
chanics and the Maxwell theory of the electromagnetic 
field, revealed most dramatically in the failures of the 
Michelson-Morley experiment to detect absolute motion 
of the earth through the “aether”, barred the way to 
a logically consistent understanding of the deflection of 
a charged particle by electric and magnetic fields when 
the particle is moving at a velocity approaching the ve­
locity of electromagnetic waves. Various formulas were 
derived by Abraham, Lorentz, and Poincare. In 1901 
Kaufmann, using the new vacuum techniques pioneered 
by Thomson, determined the “apparent mass of the elec­
tron” by measuring the deflections of the recently dis­
covered β rays from radioactive substances. There was 
considerable confusion as to whether the experimental 
results confirmed or contradicted one or another of the 
formulas. Then Albert Einstein, at the time an obscure 
25-year-old examiner in the Swiss patent office, provided 
a clear and compelling theory of “the electrodynamics 
of moving bodies” which came to be called the special 
theory of relativity. Among its remarkable predictions 
was the slowing of clocks moving at high speed (demon­
strated in the Junior Lab experiment on muon decay), 
and the non-classical relations between momentum, en­
ergy and velocity that are demonstrated in the present 
experiment [1]. 
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In classical dynamics a particle acted on by a force F�

for a time dt over a displacement dr gains momentum 
dp� = � = � �Fdt and kinetic energy dK F dr.· 

According to Newtonian dynamics the kinetic energy 
K, momentum p�, and velocity �v of a particle are related 
by the equations 

p� = m�v (1) 

and 

K = p 2/2m (2) 

where p2 = p� p� and m is the inertial mass of the particle. ·
In classical mechanics there is no limit on the magnitude 
of �v. 

According to relativistic dynamics (see [2], or other 
text on special relativity), these quantities are related by 
the equations 

p� = mγ�v (3) 

and 

E2 = p 2 c 2 + m 2 c 4 , (4) 

where E = K + mc2 = γmc2 is the “total relativistic 
energy.” The quantity m is a relativistic invariant and 
identical with the classical inertial mass, and γ is the 
Lorentz factor defined by the equation 

γ = (1 − β2)−1/2 , (5) 

where β = |�v|/c . Solving equation (4) for the kinetic 
energy one obtains �� � �2 

�1/2 
� 

K = mc 2 1 + 
p − 1 . (6) 

mc 

In the limit of high velocities where p � mc, equation (6) 
approaches 

K = pc, (7) 

which is the exact relation between the energy and mo­
mentum of massless particles such as photons and neutri­
nos. For p < mc equation (6), expanded by the binomial 
theorem, becomes 

p2 � 
1 � p �2 

� 

K =
2m 

1 − 
4 mc 

+ · · · . (8) 

In the limit of low velocities (|�v| � c ) where p � mc 
, equation (8) reduces to the classical relation expressed 
by equation (2). 

The electromagnetic force on a charged particle is � � � � 
�F = q �E + 

�v 
c 

× �B , (9) 

where q is the invariant charge, E� and B� are the electric 
and magnetic field intensities, respectively, and c is the 
invariant speed of light. This force law is valid in both 
classical and relativistic dynamics. In this experiment 
you will measure the effects of electromagnetic force on 
the motion of electrons with velocities up to about 0.8c, 
and measure directly the relations between �v, p�, and K. 

Some useful references related to beta-decay, beta-
spectroscopy and this experiment in particular are given 
in [3–8]. 

3. EXPERIMENTAL SETUP 

The apparatus for the present experiment, shown 
schematically in Figure 1, is contained in a vacuum cham­
ber inside a spherical magnet that maintains a uniform 
field in the vertical direction. Inside the vacuum cham­
ber are 1) a source of energetic electrons (a minute quan­
tity of 90Sr which emits electrons with a spectrum of 
energies up to 0.546 MeV yielding a decay product 90Y 
which emits electrons with a spectrum of energies up to 
2.27 MeV), 2) baffles that reduce background counts due 
to scattered electrons that bounce around the vacuum 
chamber, 3) a narrow slit in the baffles at the 90-degree 
position around a circular path from the source, 4) a nar­
row slit that defines the radius of curvature of the elec­
trons that enter the velocity selector, and 5) a solid state 
PIN diode detector. An electron, emitted with a momen­
tum in a narrow range of magnitude and direction, tra­
verses a helical path of fixed radius in the magnetic field 
and enters the gap between the velocity-selector plates. 
If the voltage, V , between the plates is adjusted so that 
the electric force cancels the magnetic force, then the 
electron passes through the “velocity selector” in a nearly 
straight trajectory and strikes the PIN diode in which a 
number of silicon valence electrons proportional to the 
energy deposited are promoted to the conduction band 
of the semiconductor and collected as a pulse of charge. 
The latter is converted by a low-noise preamplifier and 
precision amplifier into a voltage pulse with an amplitude 
proportional to the deposited energy which is measured 
by a multi-channel pulse height analyzer (MCA). 

For each of several settings of the magnet current one 
measures 1) the magnetic field, 2) the voltage across the 
selector plates that yields the maximum counting rate of 
pulses in the narrow range of pulse height channels of the 
MCA corresponding to the energy range of the detected 
electrons, and 3) the median channel of the pulse height 
distribution. Given these data, the dimensions of the 
apparatus, and the energy calibration of the PIN detector 
one can determine the momentum, energy, and velocity 
of electrons and estimate the values of e/m, m, and e. 



���� ���� 
� � 

3 

PREAMP

AMPLIFIER

MULTI-CHANNEL
ANALYZER

OSCILLISCOPE

40.6 +/- 0.4 cm

SOURCE

B

PIN

VELOCITY SELECTOR
Plate Separation = 0.185 cm

length = 10 cm

Sr/ γ9090

Canberra Mo. 2003BT

Ortec 471

DIGITAL VOLTMETER

Fluke 8012A

VELOCITY SELECTOR
HV SUPPLY: 0-5000 V

Bertan Mo. 377P

BIAS VOLTAGE 
SUPPLY: 70 V

EG&G Ortec 428

VACUUM CHAMBER
~3 x 10 -8 Torr

FIG. 1: Schematic diagram of the particle spectrometer and 
associated circuitry. The velocity selector is labeled VS, and 
the diode detector PIN. 

4. THEORY OF THE EXPERIMENT 

In the region between the source and the velocity se­
lector, where only a magnetic field exists, the motion is 
described by the equation 

B 
= 

d�p 
dt

|�v| |�v|
ρ 

e p 
, (10)= ω �p| =|

c 
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as the velocity approaches c. According to the relativity 
equation (3), a plot of B against (E/B)[1 − (E/B)2]−1/2 

should be fit by a straight line with a slope of (mc2)/(eρ). 
From the slope and knowledge of the values of c and ρ 
one can estimate the invariant quantity e/m. 

In the experiment it is a good idea to set the magnetic 
field and then determine the voltage between the selector 
plates that gives the highest rate of counts of electrons 
that traverse the circular path and pass between the ve­
locity selector plates to strike the PIN diode detector. 

Note that measurements of E and B alone yield a de­
termination of e/m but neither e nor m separately. This 
is characteristic of all experiments involving only electro­
magnetic forces. Why is this so? Consider the analogy 
to the problem of determining the ratio of gravitational 
to inertial mass of a body moving under the influence of 
gravity. (Incidentally, there are two experiments in Ju­
nior Lab which yield measurements of e, the Millikan oil 
drop experiment, and the shot noise experiment.) 

The PIN diode detector combines the virtues of an 
ultra-thin entrance window and surface dead layer with 
a total sensitive thickness sufficient to stop electrons with 
several hundred keV of kinetic energy. Thus, with appro­
priate calibration, the PIN diode provides a measure of 
the kinetic energy of the detected electrons. Plots of the 
kinetic energy against E/B or against [1 − (E/B)2]−1/2 

reveal the relation between energy and velocity; the slope 
so of the latter plot yields a value of m (or more conve­

niently mc2 expressed in units of keV in terms of which 
c 

B = p,
eρ 

(11) the energies of the calibration X and gamma-ray pho­
tons are expressed). A plot of energy against B reveals 
the deviation of the energy-momentum relation from the 
classical quadratic form E = p2/(2m) toward the linear 
form E = pc valid for a particle moving with a velocity 
close to c. 

5. APPARATUS DETAILS 

where ρ is the radius of curvature of the particle trajec­
tory under the influence of the magnetic force. Placement 
of the source, the collimator, and the aperture of the ve­
locity selector on a circle of radius ρ allows only particles 
with a momentum in a narrow range around Beρ/c to 
enter the velocity selector. In the region between the ve­
locity selector plates E� , B� , and �v are perpendicular to 
each other so one can write for particles that experience 
zero deflecting force and go exactly parallel to the plates 
the relation 

evB 
eE − = 0, (12) 

c 

where E = V/d. Hence 

β = |�v|/c = E/B. (13) 

Thus, for any combination of E and B such that E < B, 
the velocity selector transmits particles with velocities 
near E/B in a narrow range of magnitudes whose width 
depends on the geometry of the gap between the plates. 

A plot of measured values of B against the ratio E/B 
reveals the relation between momentum and velocity. Ac­
cording to the classical equation (1) the plot would be fit 
by a straight line with a slope of (mc2)/(eρ). Deviation 
from a straight line as E/B 1 indicates the failure →
of the classical relation between momentum and velocity 

The magnet consists of a stack of circular air-core coils 
enclosing a spherical volume and connected in series so as 
to produce a current distribution over the surface of the 
sphere which is approximately equal to the ideal smooth 
distribution required to produce a uniform field inside 
the sphere. It turns out that the required distribution of 
surface current density is 

J(θ, φ) = J0 sin θ, (14) 

where J0 is related to the magnitude Bi = |B�i| of the 
uniform field inside by an equation that is left for the 
reader to derive (for hints see Appendix A). 

The current for the magnet is provided by a stabi­
lized supply whose output can be as high as 200 volts at 
low impedance, which means that it can deliver a lethal 
shock. Be careful! Turn off the power supply be­
fore touching the magnet. Be sure the cooling 
fan is turned on whenever the current exceeds 3 
amperes. 
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FIG. 2: The β-ray Spectra of 90Sr and 90Y. The actual energy 
spectrum of the electrons in this experiment will be distorted 
by energy loss of the electrons in the material of the source 
and in the thin metal covering over the source. 

The coil assembly is split at its equator. The upper 
hemisphere can be lifted with the block and tackle for 
access to the spectrometer assembly which is located in­
side the vacuum vessel under a heavy plastic plate. 

The β-ray source, 90Sr, decays with a half life of 28 yrs 
to 90Y with emission of an electron with a maximum en­
ergy of 0.546 MeV. The yttrium nucleus in turn decays 
with a half life of 64 hrs to 90Zr with emission of an elec­
tron with a maximum energy of 2.27 MeV. In each of 
these steps, a neutron in the nucleus is transformed into 
a proton with the simultaneous emission of an electron 
and an antineutrino. Since the two particles emitted in 
the β-decay process can share the available energy with 
the recoiling nucleus in any proportion consistent with 
the conservation of momentum, the energy spectra of the 
electrons are continuous from zero to the specified max­
ima (for details see [4]). A sketch of the energy spectrum 
of electrons emitted by a thin 90Sr source is displayed in 
Figure 2. 

A narrow slit located at the 90-degree position defines 
the circular trajectory. The velocity selector consists of 
two aluminum blocks mounted with their faces precisely 
parallel to each other and tangent to the central electron 
path at the entrance to the gap. The voltage for the 
velocity selector is provided by a high-impedance high-
voltage power supply supplemented by a high-voltage 
battery. 

The detector is a PIN diode shielded from light by a 
thin film of aluminized Mylar. The PIN diode should 
be operated with a positive bias of 50 volts (caution: 
voltage above 70 volts will destroy it). A graph 
of various interaction efficiences for photons in silicon is 
shown in Figure 3. 
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FIG. 3: Photon detection efficiencies in silicon. 

6. EXPERIMENT 

Check that the vacuum is better than 10−4 torr. A 
good vacuum is essential because multiple small angle 
scattering of the electrons by residual gas will distort the 
trajectories. The rms angle of scattering can be esti­
mated by the following approximate formula: 

1/2 15 MeV/c 
� 

X 
�1/2 

<θ2> = , (15) 
p X0 

where p is the momentum measured in MeV/c (1 MeV/c 
= 5.34 × 10−17 dyne-sec), X is the amount of material 
in the path measured in gm cm−2, and X0 is a constant, 
called the “radiation length” and characteristic of the 
material. The radiation length of air is 37 gm cm−2 . 

Set up the pulse height measurement chain, and check 
the performance at each stage with the oscilloscope. 

The magnetic field is measured with a Hall effect mag­
netometer. Before every use of the magnetome­
ter check the calibration and the zero setting. 
The Hall sensor, fragile and expensive, is a thin wafer 
of semiconductor attached to the signal leads. The wafer 
and its attached wires should be carefully inserted in the 
protective aluminum tube and the tube inserted in the 
plastic block that can be placed on top of the plastic 
cover of the vacuum chamber. To measure accurately 
the vertical component of the magnetic field the plane of 
the semiconductor wafer must be exactly horizontal. To 
achieve this condition raise the top hemisphere of the 
magnet just enough to allow you to place the plastic block 
with the Hall sensor flat inside the aluminum tube in the 
middle of the vacuum cover where you can assume the 
field will be almost exactly vertical. Turn on the mag­
net current to 5 amperes. Rock the plastic block to find 
the orientation that yields the maximum magnitude of 
the field. Then rotate the aluminum tube containing the 
Hall sensor so that the maximum reading is obtained with 
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FIG. 4: Decay of Ba-133 to Cs-133. Data from the Table of 
Nuclides. 

the plastic block lying flat on the vacuum cover. 
Explore the operation of the experiment, and survey 

the ranges of the measurements before starting a defini­
tive sequence of measurements: 

1. With the magnet current set to give a field of ap­
proximately 100 gauss, measure the precise values 
of the field at several positions above the circular 
trajectory from source to PIN diode with the mag­
net closed to ascertain the degree of uniformity of 
the field and estimate error in the field measure­
ment due to non-uniformity. 

2. Calibrate the measurement chain with the X-ray 
and gamma-ray emissions of the laboratory calibra­
tion sources. Be aware of the possibility of a zero 
offset, i.e., of the 0 channel corresponding to some 
positive energy. Specially useful for the calibration 
is the 133Ba source stored in the lead container un­
der the spherical magnet (133Ba decays by electron 
capture, so in addition to the gamma rays of sev­
eral energies emitted by the daughter nucleus, the 
daughter atom, Cs, also emits a K X-ray). You can 
find the gamma-ray energies by examination of Fig­
ure 4 taken from http://ie.lbl.gov/toi.html. 
The K-shell X-ray energies can be found in various 
X-ray tables (e.g. CRC handbook). Handbook. 

The cross section for photoelectric interaction of 
high-energy photons of energy E in matter of 
atomic number Z varies approximately as ZE. In 
the energy range from ∼ 20 to 100 keV monoener­
getic photons interacting in the silicon PIN diode 
produce a pulse-height spectrum with a prominent 
photoelectric peak. Above 200 keV the photo­
electric interaction cross section is small relative 
to the Compton scattering cross section. How­
ever, you can use the high end (Compton edge) 
of the distribution of pulse heights produced by re­
coil electrons from Compton scattering of the pho­
tons as a calibration point. In the text of Melissi­
nos you can find a discussion of Compton scatter­
ing, and the relevant information for calculating 
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the energy corresponding to the Compton edge of 
the distribution of pulse heights produced by elec­
trons that recoil from the scattering events. The 
first day you should acquire a 2-3 hour (or 
overnight if possible) calibration in order to 
generate sufficient events at higher energies 
for a multi-point calibration. Plot as many 
calibration energies as possible against the 
median MCA channels of the corresponding 
spectrum features (photopeak or Compton 
edge). The resultant calibration should be 
very linear if you’ve correctly identified all 
the features. On subsequent days, a 10-15 
minute calibration should suffice at the start 
of each lab session. 

3. With the magnet field at approximately 100 gauss, 
vary the voltage applied to the velocity selector 
around 4.5 kV while looking for evidence of pulses 
accumulating in a narrow distribution in the spec­
trum of pulse heights displayed on the MCA screen. 
Increase the energy of the selected electrons step by 
step by increasing B and V , and adjust the mea­
surement chain so that the pulses recorded with 
the highest attainable energies accumulate near the 
high end of the spectrum displayed on the MCA. 

4. For each of many (∼ 10) values of B spread over 
as wide a range as possible, measure the voltage 
V that yields the maximum counting rate. The 
best procedure is to measure the counting rate as 
a function of V around V and at enough values 
of V to permit a gaussian fit to the data. Tab­
ulate B, V , and the kinetic energy corresponding 
to the median channel number of the pulse-height 
distribution. Estimate the errors in each of these 
measurements so that you have the necessary data 
for error analysis of your results. (Note: the error 
of a voltage determination is not the FWHM of the 
measured curve of V vs count rate.) 

7. ANALYSIS 

For each value of B and E = V0/d calculate E/B. 
Then plot E/B on the Y axis against B on the X axis. 
On the same plot draw curves that show the relations 
between these quantities predicted by classical and rela­
tivity dynamics. 

For each value of B, calculate e/m according to the 
classical and the relativity formulas and plot the results 
with error bars against B. 

Discuss the effect of the spread in the trajectories of 
the detected electrons on the errors in the determinations 
of e/m. 

Derive a final best value of e/m with a probable error 
using the techniques in [9]. 

Plot your measured values of K against p, and draw the 
curves predicted by classical and relativity mechanics. 

http://ie.lbl.gov/toi.html
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7.1. Possible Theoretical Topics 

1. The surface current distribution required to pro­
duce a uniform field inside the spherical magnet. 

2. Relativistic dynamics—-i.e., the relation between 
v, p, and E. 

3. Compton scattering and the photoelectric effect at 
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gamma-ray energies. 

4. PIN diodes as particle detectors. 

5. Resolution of the velocity selector. 

6. Multiple Coulomb scattering of the electrons by the 
residual air in the vacuum chamber. 

[1] Various,	 selected reprints by the American Institute of 
Physics (1963). 

[2] A. P. French, Special Relativity (MIT Press, 1968). 
[3] E.	 Bleuler and G. Goldsmith, Experimental Nucleonics 

(Holt, Rinehart, and Winston, 1960), pp. 342–346. 
[4] R.	 Evans, The Atomic Nucleus (McGraw-Hill, 1953), 

chapter 17, pp. 536–566, Also contains statistics in chap­
ter 26. 

[5] J. England, Techniques in Nuclear Structure Physics, vol. 
Vol. II (Wiley and Sons, 1974), pp. 349 ff. 

[6] R. B. L.	 R. P. Feynman and M. Sands, The Feynman 
Lectures on Physics (Addison-Wesley, 1963), i-15. 

[7] J.	 D. Jackson, Classical Electrodynamics (Wiley and 
Sons, 1962). 

[8] D. J. Griffiths,	 Introduction to Electrodynamics (Upper 
Saddler River, 1999). 

[9] P. R. Bevington and D. K. Robinson, Data Reduction and 
Error Analysis for the Physical Sciences (McGraw-Hill, 
2003), 3rd ed. 

APPENDIX A: THE SPHERICAL

UNIFORM-FIELD MAGNET


The magnet is an arrangement of currents in coaxial 
coils distributed over the surface of a sphere in such a 
way as to produce a uniform magnetic field Bi inside the 
sphere. The design problem is to find the distribution of 
surface current density J(θ, φ) that achieves this condi­
tion. 

Everywhere but on the surface of the sphere curl B = 
j = 0. It follows that B = −grad φm, where φm is a 
(magnetic) potential function, i.e. a solution of Laplace’s 
equation div (grad φm) = �2φm = 0. According to 
a fundamental theorem of potential theory, a solution 
of Laplace’s equation that satisfies a particular set of 
boundary conditions, such as the distribution of currents 
on the surface of our sphere, is unique except for an ad­
ditive constant. Thus if you can cook up a solution of 
Laplace’s equation that does, indeed, satisfy the bound­
ary conditions, you can be sure you have got the one and 
only solution to the problem. 

If the field is to be uniform inside the sphere, then 

φm(r, θ, φ) = −Biz = −Bir cos θ. r < R (A1) 

Outside at large distances it is certainly true that 

m cos θ 
φm = r � R (A2) 

r2 

i.e. the potential must have the form of a dipole poten­
tial at large distances since the field is the sum of con­
tributions from many coaxial circular current loops. The 
problem boils down to that of matching an outside dipole 
field to the inside uniform field Bi by proper adjustment 
of the surface current distribution in such a way as to sat­
isfy the continuity requirements on the radial and tangen­
tial components of B� . The continuity conditions follow 
directly from the two Maxwell equations governing the 
magnetostatic field, viz. 

� · B� = � 
0, �

4π �× B� = 
c 

�j. 

(Note: �j is the volume current density with dimensions 
of statamps cm−2 , whereas what we seek is the surface 
current density with dimensions statamps cm−1.) 

The rest of the solution is left to the reader. 
For the general approach to the solution of such bound­

ary condition problems see, e.g., Jackson (1962) or Grif­
fiths (1999). 

APPENDIX B: EQUIPMENT LIST 

Manufacturer Description URL 

Agilent Oscilloscope agilent.com 

Sorenson 0-5A Power Supply 

RFL Gaussmeter 

Bertran 7.5kV Velocity Selector PS 

Canberra 2006 Charged Particle Preamp 

Hamamatsu PIN Diode 

Ortec Amplifier ortec-online.com 


