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September 6, 2014 6:00pm 

Announcements 

The first week is dedicated primarily to discussing and expanding upon material from 
Classical Mechanics II. 

Reading Assignment for the first two weeks of the course 

•	 Lagrangian and Hamiltonian classical mechanics, symmetries and conservation laws. 
Use of generalized coordinates to handle constraints to motion on surfaces or curves. 
Read the following parts of Goldstein to review and extend concepts you have 
already seen in Classical Mechanics II: pgs. 34-45, 55-56, 61-63, 334-342, then 343­
347 and 353-356 (ie. specific parts of sections 2.1-2.3, 2.6, 2.7, 8.1, 8.2, 8.5.) If your 
feeling rusty with Clasical Mechanics II material you might want to review sections 
1-10, and 40 of Landau & Lifshitz. 

•	 On problem set #2 we will cover: D’Alembert’s principle and systems with holonomic 
and non-holonomic constraints. Use of Lagrange multipliers to determine forces of 
constraint. If you want to read ahead the corresponding reading is Goldstein: sec­
tions 1.3-1.6, 2.4, 2.5, 8.5. 
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Problem Set 1 

These five problems are intended to help you review and generalize results from Clas­
sical Mechanics II. 

1. Two Particles in a Gravitational Field [12 points]
Consider two masses m1 and m2 moving in three dimensions which are attracted to
each other gravitationally, and are also acted on by a uniform gravitational field with
acceleration strength g in the −ẑ direction.

(a) What is the Lagrangian? Use center of mass coordinates and the vector distance 
rr between the two particles. This Lagrangian naturally splits itself into the sum 
of two parts, explain physically why this makes sense. 

(b) Consider the part of the Lagrangian depending	 on rr and determine the La­
grangian and compute the Euler-Lagrange equations of motion using spherical 
coordinates. 

(c) Using the Lagrangian in (b), what is the corresponding Hamiltonian? What are 
the Hamilton equations of motion? 

2. Double Pendelum in a Plane with Gravity [20 points]
Since the double pendelum is our mascot on the course homepage, we’d best find the
equations that govern its motion.

a) Obtain the Lagrangian and equations of motion for
the double pendulum illustrated here. The point at the 
top is fixed and the oscillations take place in a two-
dimensional plane. The length of the pendula are £1 
and £2, and the rigid bars of the pendula can be taken 
to be massless. The balls on the ends have mass m1 and 
m2. 
b) Now take m1 = m2 and find the Hamiltonian for this
system, and the Hamilton equations of motion. [If you 
wish you can make use of results derived in lecture.] 

3. Point Mass on a Hoop [12 points]
Do Goldstein Ch.2 Problem #18. Use spherical coordinates (r, θ, φ) with the origin
at the center of the hoop.
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4. Spring System on a Plane [10 points]
A massless spring has an unstretched length b and spring constant k, and is used to
connect two particles of mass m1 and m2. The system rests on a frictionless table
and may oscillate and rotate.

(a) What is the Lagrangian? Write it with two-dimensional cartesian coordinates. 
(b) Setup a suitable set of generalized coordinates to better account for the symme­

tries of this system. What are the Lagrangian and equations of motion in these 
variables? 

(c) Identify as many conserved generalized momenta as you can that are associated 
to cyclic coordinates in the Lagrangian from part b). If you think you are 
missing some, try to improve your answer to b). Show that there is a solution 
that rotates but does not oscillate, and discuss what happens to this solution 
for an increased rate of rotation. (A closed form solution is not necessary. A 
graphical solution will suffice.) 

5. Jerky Mechanics [6 points]
Consider an extension of classical mechanics where the equation of motion involves

... 
a triple time derivative, x = f(x, x,˙ x, t¨ ). Lets use Hamilton’s principle to derive 
the corresponding Euler-Lagrange equations. Start with a Lagrangian of the form 
L(qi, q̇i, q̈i, t) for n generalized coordinates qi, and make use of Hamilton’s principle 
for paths qi(t) that have zero variation of both qi and q̇i at the end points. Show that 

d2	 ∂L d ∂L ∂L − + = 0 
dt2 ∂q̈i dt ∂q̇i ∂qi

for each i = 1, . . . , n. 

6.*	 Extra Problem: Equivalent Lagrangians [not for credit] 
Some of you have seen this problem already in Classical Mechanics II. If it does not 
sound familiar then I suggest you try it. (It will not be graded but solutions will be 
provided.) 

Let L(q, q̇, t) be the Lagrangian for a particle with coordinate q, which satisfies the 
Euler-Lagrange equations. Show that the Lagrangian 

dF (q, t)
L' = L + 

dt 

also satisfies the Euler-Lagrange equations where F is an arbitrary differentiable 
function. 



MIT OpenCourseWare
http://ocw.mit.edu

8.09 Classical Mechanics III
Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

