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PROBLEM 1: SOME SHORT EXERCISES (30 points)

(a) (10 points) Use index notation to derive a formula for ∇×� ( �sA), where s is a scalar
field s(�r ) and �A is a vector field �A(�r ).

SOLUTION: [
∇×�

(
�sA
)]

= �εijk∂j

(
sA

i

)
k

= εijks∂jAk + εijkAk∂js

= �s∇× �A+∇� s× �A .

(b) (10 points) Which of the following vector fields could describe an electric field? Say
yes or no for each, and give a very brief reason.

(i) �E(�r ) = x êx − y êy .

(ii) �E(�r ) = y êx + x êy .

(iii) �E(�r ) = y êx − x êy .

SOLUTION: The curl of an electrostatic field must be zero, but otherwise there is
no restriction. So the answer follows as(

∂Ey ∂E
(i) ∇×� �E ( x

�r ) = −
)

êz + . . . = �0. YES, it describes an electric field.
∂x ∂y

(ii) ∇×� �E (�r ) = (1− 1)êz = 0 . YES, it describes an electric field.

(iii) ∇×� �E (�r ) = (−1− 1)êz = −2êz . NO, it does not describe an electric field.

(c) (10 points) Suppose that the entire x-z and y-z planes are conducting. Calculate the
force �F on a particle of charge q located at x = x0, y = y0, z = 0.

SOLUTION: we need 3 image charges placed as:

q1 =− q at (−x0, y0, 0)

q2 =− q at (x0,−y0, 0)

q3 =+ q at (−x0,−y0, 0) .
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Note that q1 and the original charge give zero potential on the x = 0 plane, but allow
the potential to vary with x in the y = 0 plane. The second image charge, combined
with the original charge but ignoring the first image charge, produces a potential
that is zero on the y = 0 plane, but the potential varies with y on the x = 0 plane.
The final image charge fixes these remaining problems. For any point on the y-z
plane (the x = 0 plane) the original charge and q1 pair to give zero potential, and
similarly q2 and q3 pair to give zero potential. For points on the x-z plane (where
y = 0), the original charge and q2 give canceling potentials, as do q1 and q3.

Having found the image charges, we can write the force as

�F = �Fq1 + �Fq2 + �Fq3

where �Fqi
is defined as the force of charge qi on charge q. The force exerted on the

charge q is found to be as:

1 −q2 1 −q2 1 q2 x�F = x
4x2 ˆ + 0x̂+ y0ŷ

y .
4πε 4πε 4y2 ˆ+

4πε 4(x2 + y2)
√

x2 20 0 0 0 0 0 0 0 + y0

Surprisingly, this question was the one that gave the class the most trouble, with a
class average of only 51%. The problem was even illustrated in Lecture Notes 5, on
the fourth page of those notes (labeled p. 61). The moral:

PLEASE REVIEW IMAGE CHARGES!

PROBLEM 2: ELECTRIC FIELDS IN A CYLINDRICAL GEOMETRY (20
points)

A very long cylindrical object consists of an inner cylinder of radius a, which has a
uniform charge density ρ, and a concentric thin cylinder, of radius b, which has an equal
but opposite total charge, uniformly distributed on the surface.

(a) (7 points) Calculate the electric field everywhere.

(b) (6 points) Calculate the electric potential everywhere, taking V = 0 on the outer
cylinder.

(c) (7 points) Calculate the electrostatic energy per unit length of the object.
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PROBLEM 2 SOLUTION:

(a) This problem has enough symmetry to allow a solution by Gauss’s law. In particular,
symmetry considerations imply that the electric field will point radially outward, and
will have a magnitude that depends only on the distance from the axis. Following
Griffiths, we use s for the distance from the z-axis, and ŝ for a unit vector pointing
radially outward from the axis, and of course we choose the z-axis to be the axis of
the cylindrical object. Then

�E = E(s) ŝ . (2.1)

To evaluate E(s), we apply Gauss’s law to a Gaussian cylinder of length �, concentric
with the z-axis. Then ∮

Q�E · d�a = enc = 2πs�E(s) . (2.2)
ε0

For s < a, the Gaussian cylinder is filled with charge density ρ, so

Qenc = πs2 ρs
�ρ =⇒ E(s) = . (2.3)

2ε0

For a < s < b the enclosed charge is

Qenc = πa2 ρa2

�ρ =⇒ E(s) = . (2.4)
2ε0s

Finally, for s > b the enclosed charge is zero, so E(s) = 0. Putting this together,

ρ


s ŝ if s < a
a2

�E = ŝ if a < s < b (2.5)
2ε0  s

�0 if s > a .

(b) To find the potential from the electric field, we can use

�r
�V (�r ) = V (�r 0)−

∫
E( ��r ′) d

�r 0

· �′ (2.6)

from the formula sheet. Since the line integrals that define the electric potential are
path-independent, we can choose to integrate only over radial paths. For s > b we
clearly have V (s) = 0, since the absence of an electric field in this region implies
that V = const, and V = 0 at s = b. Then, for a ≤ s ≤ b,∫ s b ρ b a2 ρa2 b

V ( �s) = V (s= )− � � �b E = 0 +
∫

d
b

· d� E · d� =
2ε0

∫
s = ln . (2.7)

s s s 2ε0 s
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This is valid down to s = a, so V (a) =
2ρa

2ε ln(b/a) , and then for s ≤ a,
0

s ρa2 ρ a

V (s) = � �V (s=a)−
∫

E
a

· d� = + s ds
2ε0 ln(b/a) 2ε0

∫
s (2.8)

ρa2 ρ
= ln(b/a) + (a2 − s2 ρ

) =
[
2a2 ln(b/a) + a2 − s2 .

2ε0 4ε0 4ε0

]

Putting these together

0 if s > b
ρ

V (s) =
ε0


2a2 ln b if a < s < b (2.9)

4 s
2a2 ln(b/a) + a2 − s2 if s < a .

(c) To find the electrostatic energy, we can use either

1 2

W = �ε E d3x (2.10)
2 0

∫ ∣∣ ∣∣ ∣
or

∣

1
W =

∫
ρ(�r )V (�r ) d3x . (2.11)

2

Using Eq. (2.10) with (2.5),

1
{∫ a( 2 2

ρ
)

a4

W = ε0 s2 2πs ds+
∫ b( ρ

)
2πs ds

}
� , (2.12)

2 0 2ε0 a 2ε0 s2

so
W πρ2

{∫ a ∫ b a4

= s3 ds+ ds
� 4ε0 0 a s

}

πρ2
{
1

= a4

(
b

+ a4 ln
4ε0 4 a

)}
(2.13)

πρ2a4

=
16ε0

[
1 + 4 ln

(
b

a

)]
.
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By using Eqs. (2.11) with (2.9), we first note that V = 0 on the outer cylinder, so
we get a contribution only by integrating over the inner cylinder:

W ρ2 b
=

∫ a [
2a2 ln

( )
+ a2 − s2

� 8ε0 0 a

]
2πs ds

πρ2 b a a

= 2a2 ln + a2 s ds s3 ds
4ε0

{[ (
a

) ]∫
0

−
∫

0

}

πρ2 4

=
{[

2a2 ln
(

b
)

2

+ a2 a

4ε a

](
2

)
−
(
a

0 4

)}
(2.14)

πρ2a4

=
16ε0

[
4 ln

(
b

1 +
a

)]
.

PROBLEM 3: MULTIPOLE EXPANSION FOR A CHARGED WIRE (20
points)

A short piece of wire is placed along the z-axis, centered at the origin. The wire
carries a total charge Q, and the linear charge density λ is an even function of z: λ(z) =
λ(−z). The rms length of the charge distribution in the wire is l0; i.e.,

l2
1

0 =
Q

∫
z2λ(z) dz .

wire

(a) (10 points) Find the dipole and quadrupole moments for this charge distribution.
Note that the dipole and quadrupole moments are defined on the formula sheets as

pi =
∫

d3x ρ(�r ) xi ,

Qij =
∫

d3x ρ(�r )(3xixj − δij |�r |2) .

(b) (10 points) Give an expression for the potential V (r, θ) for large r, including all terms
through the quadrupole contribution.
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PROBLEM 3 SOLUTION:

(a) (10 points) The dipole moment is defined as

p 3
i =

∫
d x ρ(�r) xi .

In this case the x and y components are zero, since x1 = x2 = 0 for the wire which
runs along z-axis. The z component of the dipole moment is pz, given by

pz =
∫

λ(z) z dz ,
wire

where d3x ρ(�r) from the general formalism was replaced by λ(z) dz. This integration
also yields zero since λ(z) being an even function makes λ(z) z an odd function.
Therefore the integral gives zero. The dipole moment is found to be

p� = 0 .

The quadrupole moments are defined as,

Qij =
∫

d3xρ(�r )(3xixj − δij |�r|2) .

Since the wire runs along z-axis we again have x1 = 0 and x2 = 0, and we
also have |�r| = |z| on the wire. Using the rms length of the charge distribution,∫

z2λ
wire

(z)dz = Ql20, we find the quadrupole moment as

Qxx = Qyy =
∫

dzλ(z)(
wire

−z2) = −Ql20 ,

Qzz =
∫

dzλ(z)(3z2 z2) = 2Ql20 ,
wire

−

Qxy = Qyx = Qxz = Qzx = Qyz = Qzy = 0 .

(b) (10 points) We use the formula for the multipole expansion of the potential on
formula sheet,

1 Q �p r̂ 1 r̂ir̂j
V (�r) = +

·
+ Qij + . . . ,

4πε r 2 3
0 r 2 r

where Q, pi and Qij are given in

[
part (a). The r̂ direction is

]

r̂ = sin θ cosφêx + sin θ sinφêy + cos θêz = rxx̂+ ry ŷ + rz ẑ
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Then performing the sum, we find the potential V (r, θ) as

1 [Q 1 rxrx 1 r y 1 r
V (r, θ) = + zr

Q
4 xx + yr + z

Q Q
2 2 yy 2 zz . . .

πε0 r r3 r3 r3

]
Up to the quadrupole term,

1 Ql
V (r, θ) =

[Q 2

+ 0 (− sin2 θ cos2 φ n
πε0 r 2r3

− sin2 θ si 2 φ+ 2 cos2 θ)
4

]
1 Q

=
[ Ql2

+ 0 (
4πε0 r 2r3

− sin2 θ + 2 cos2 θ)
]

1 Q Ql2
=

[
+ 0 (3 cos2 θ

4πε0 r 2r3
− 1)

]
.

PROBLEM 4: A SPHERICAL SHELL OF CHARGE (30 points)

(a) (10 points) A spherical shell of radius R, with an unspecified surface charge density,
is centered at the origin of our coordinate system. The electric potential on the shell
is known to be

V (θ, φ) = V0 sin θ cosφ ,

where V0 is a constant, and we use the usual polar coordinates, related to the Carte-
sian coordinates by

x = r sin θ cosφ ,

y = r sin θ sinφ ,

z = r cos θ .

Find V (r, θ, φ) everywhere, both inside and outside the sphere. Assume that the
zero of V is fixed by requiring V to approach zero at spatial infinity. (Hint: this
problem can be solved using traceless symmetric tensors, or if you prefer you can
use standard spherical harmonics. A table of the low-� Legendre polynomials and
spherical harmonics is included with the formula sheets.)

(b) (10 points) Suppose instead that the potential on the shell is given by

V (θ, φ) = V0 sin2 θ sin2 φ .

Again, find V (r, θ, φ) everywhere, both inside and outside the sphere.

(c) (10 points) Suppose instead of specifying the potential, suppose the surface charge
density is known to be

σ(θ, φ) = σ0 sin2 θ sin2 φ .

Once again, find V (r, θ, φ) everywhere.
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PROBLEM 4 SOLUTION:

This problem can be solving using either traceless symmetric tensors or the more standard
spherical harmonics. I will show the solution both ways, starting with the simplier
derivation in terms of traceless symmetric tensors.

(a) (10 points) We exploit the fact that the most general solution to Laplace’s equation
can be written as a sum of terms of the form(

r� 1
or

r�+1

)
(�)

Ci1...i n̂i1 . . . n̂i� �
, (4.1)

where (�)
Ci1...i�

is a traceless symmetric tensor. In this case we only need an � = 1
term, since

x
Fa(θ, φ) ≡ sin θ cosφ = = x̂in̂i . (4.2)

r

For � = 1 the radial function must be r or 1/r2. For r < R the 1/r2 option is
excluded, since it is infinite at r = 0, so the solution is

r
V (�r ) = V0 Fa(θ, φ)

R

(4.3)
r r

= V0 x̂in̂i or V0 sin θ cosφ .
R R

Note that the factor (1/R) was chosen to match the boundary condition at r = R.
For r > R the term proportional to r is excluded, because it does not approach zero
as r → ∞, so only the 1/r2 option remains, and the solution is

V (�r ) = V0 a
r

(4.4)

= V0

(
R
)2 2

R
x̂in̂i or V0

r

( )
sin θ cosφ .

r

(b) (10 points) This is in principle the same problem as in part (a), with a slightly more
complicated angular pattern. In this case

2

F (θ, φ) ≡ sin2 y
θ sin2

b φ = = (ŷ
r2

· n̂)2 = ŷiŷj n̂in̂j . (4.5)

( 2
R
)

F (θ, φ)
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This is not quite the expansion in traceless symmetric tensors that we want, because
ŷiŷj is not traceless, but instead has trace δij ŷiŷj = ŷ · ŷ = 1. However, we can easily
make it traceless by subtracting 1δij3 , writing

1
b(θ, φ) =

[
1

F ŷiŷj − δ
3 ij

]
n̂in̂j + . (4.6)

3
To simplify the notation of what follows, I define

1
F (θ, φ) =

[
ŷ ŷ − δ

]
n̂ n̂ = sin2 1

2 θ 2
i j 3 ij i j sin φ− , (4.7)

3
and

1
F0(θ, φ) = , (4.8)

3
so

Fb(θ, φ) = F2(θ, φ) + F0(θ, φ) , (4.9)
where F2 and F0 refer to the � = 2 and � = 0 parts. To construct the potential, the
� = 2 term can be multiplied by r2 or 1/r3, where the second is excluded for r < R
and the first is excluded for r > R. The � = 0 term can be multiplied by 1 or 1/r,
where the second is excluded for r < R and the first is excluded for r > R. Thus,
for r < R we have

V (�r ) = V0

[( r )2

F2(θ, φ) + F0(θ, φ)
R

]
(4.10a)

= V0

[( r

R

)2 (
ŷiŷj − 1δ 1

ij ninj3

)
ˆ ˆ + 3

]
or (4.10b)

V0

[( r )2 (
sin2 θ sin2 φ

R
− 1

3

)
+ 1

3

]
. (4.10c)

For r > R we have

V (�r ) = V0

[(
R
)3

R
F2(θ, φ) +

r

(
r

)
F0(θ, φ)

]
(4.11a)

)3

=

[
R R

V

(
1 1

0 ŷiŷj
r

− δij n3 ˆin̂j + 3

(
r

)]( )
or (4.11b)

V0

[(
R
)3 ( R

sin2 θ sin2 φ− 1
3

)
+ 1

r 3

(
r

)]
. (4.11c)
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(c) In this case we are given σ(θ, φ) instead of the potential at r = R, so we need to
make use of the fact that the surface charge density is related to the discontinuity
in the radial component of the electric field. From Gauss’s law, we know that

σ
Er(r=R+)−Er(r=R−) = . (4.12)

ε0

From the previous part, we know that we can write the potential as

{
A
(

r
2(θ, φR

)2
F ) +BF0(θ, φ) for r < R

V (�r ) = (4.13)
A′ (R

)3
F2(θ, φ

)
Fr ) +B′ (R

0r (θ, φ) for r > R ,

where A, B, A′, and B′ are as yet unknown constants. For the potential to be
continuous at r = R (potentials are always continuous if the electric fields are finite),
we require A′ = A and B′ = B; the terms must match individually, since F0 and F2

are orthogonal to each other.

The surface charge density can be written as

σ(θ, φ) = σ0Fb(θ, φ) = σ0 F2(θ, φ) + F0(θ, φ) , (4.14)

so we can write the discontinuity equation (4.12)

(
as

)

∂V ∂V− (r=R+) + (r=R
∂r ∂r

−) =
(4.15)

3A B 2A σ
F (θ, φ) + 0

2 F0(θ, φ) + F2(θ, φ) = (F2(θ, φ) + F0(θ, φ)) .
R R R ε0

Again, since F0 and F2 are orthogonal, the coefficients must match for each of them,
leading to

Rσ
A = 0 Rσ

, B = 0
. (4.16)

5ε0 ε0

Inserting these coefficients into Eq. (4.13), we find

Rσ
( 0

V �r ) =
5ε0

{(
r
)2 (sin2 θ si 2 φ 1

R
n −

3
+ 5

3
for r < R

(4.17)(
R
r

)
)3 (

sin2 θ sin2 φ− 1
3

)
+ 5

3

(
R
r

)
for r > R .

**************************************************
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For those who enjoy looking up functions in tables and manipulating complicated ex-
pressions involving factors or

√
4π, the method of spherical harmonics is the ideal choice.

Most students in the class chose this option.

(a) This part is pretty straightforward, whether one uses traceless symmetric tensors or
spherical harmonics. Using the table in the formula sheets, and the relation

Y�,−m(θ, φ) = (−1)mY�m
∗ (θ, φ) (4.18)

from the formula sheet, one can see immediately that(
eiφ + e−iφ 2

Fa(θ, φ) ≡ sin θ cosφ = sin θ

)
π

= [
2

−
√

Y
3 11 − Y1,−1] . (4.19)

The logic is the same as above, and the answer can be written as Eqs. (4.3) and
(4.4), or as

V (�r ) = −V0

( r )√2π
[Y11(θ, φ)− Y1, 1(θ, φ)] for r < R (4.20)

R 3 −

and

V (�r ) = −V0

( 2
R
) √

2π
[Y

3 11(θ, φ)− Y1,−1(θ, φ)] for r > R . (4.21)
r

(b) This time more work is required to express the angular function in terms of spherical
harmonics:

Fb(θ, φ) = sin2 θ sin2 eiφ e− 2iφ

φ = sin2 θ

[ −
2i

]
1

= sin2 θ
4

[
2− e2iφ − e−2iφ

]

= −
√

2π 1
[Y + Y ] + sin2 θ

15 22 2,−2 2
(4.22)√

2π 1
= − [Y22 + Y2, 2] + (1− cos2 θ)

15 − 2

= −
√

2π 1
[Y

15 22 + Y 2 1 1
2,

(
cos−2]− θ

2
−

3

)
+

3

= −
√

2π 1 4π
√
4π

[Y
15 22 + Y2, 2]−

√
Y

5 20 + Y
3 3 00 .−
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As before one can separate the � = 0 and � = 2 components, writing Fb(θ, φ) =
F2(θ, φ) + F0(θ, φ), where

F2 = −
√

2π 1 π
[Y22 + Y2, 2]−

√
4

Y20 (4.23)
15 − 3 5

and √
4π

F0 = Y
3 00 . (4.24)

The calculation is then the same as before, so Eqs. (4.10a) and (4.11a) hold for these new
expressions for F2 and F0. We then conclude that

{ ( r 2π ) 1
√

4π
] √)2

[√ ( 4π
V (�r ) = V0 − Y22 + Y2, 2 + Y +

15 − 3 5 20 Y
R 3 00

}
(4.25)

for r < R, and

3
R 2π 1 4π

√
4π R

V (�r ) = V0

{
−
( ) [√ (

Y22 + Y2, + Y + Y
r 15 −2

)
3

√
5 20

]
3

(
r

)
00

}

(4.26)
for r > R. Of course the answers in Eqs. (4.10c) and (4.11c) are still correct, and can be
found by replacing the Y�m’s by their explicit forms.

(c) The calculation is the same as above, except that this time we use Eqs. (4.23) and
(4.24) for F2 and F0. The result is

Rσ
[ ( r 2

0
) (√

2π 1 4π
V (�r ) =

5
− [Y

15 22 + Y2,−2] +
ε0 R 3

√
Y

5 20

)
(4.27)

5
√
4π

+ Y
3 00

]

for r < R, and

Rσ0
V (�r ) = − [Y +

5 22 Y2,
ε

−2] + Y
0 r 15 3 5 20

(4.28)
5
√
4π R

+ Y
3

(
00

r

) ]

for r > R. Eq. (4.17) is still a valid answer, and is what one would find by replacing
the Y�m’s by their explicit values.

[
1 π

(
R
)3
(√

2π 4
√ )
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