
8.06 Spring 2015 Lecture Notes

5. Quantum Computing

Aram Harrow

Last updated: May 23, 2016

Quantum computing uses familiar principles of quantum mechanics, but with a different phi-
losophy. The key differences are

• It looks at the information carried by quantum systems, and methods of manipulating it,
in ways that are independent of the underlying physical realization (i.e. spins, photons,
superconductors, etc.)

• Instead of attempting to describe the world around us, it asks what we can create. As a result,
features of quantum mechanics that appear to be limitations, such as Heisenberg’s uncertainty
principle, can be turned into new capabilities, such as secure quantum key distribution.

The approach is of course analogous to classical computing, where the principles of computing
are the same whether your information is stored in magnetic spins (e.g. a hard drive) or electric
circuits (e.g. RAM). After the modern notion of a computer was invented in the 1930s by Alan
Turing, Alonzo Church, and others, many believed that all computing models (ranging from modern
CPUs to DNA computers to clerks working with pencil and paper) were fundamentally equivalent.
Specifically, the Strong Church-Turing thesis held that any reasonable computing model could
simulate any other with modest overhead. Relativity turns out to still be compatible with this
hypothesis, but as we will see, quantum mechanics is not.

1 Classical computing

Model a classical computer by a collection of m bits x1, . . . , xm upon which we perform gates, each
acting on O(1) bits. For example, the NOT gate acts on a single bit, maps 0 to 1, and 1 to 0. The
NAND gate means “not-AND” is defined by

x y x NAND y

0 0 1

0 1 1

1 0 1

1 1 0

The NAND gate is useful because it is computationally universal. Using only NAND gates, we can
construct any function on n-bit strings.

Here, we can imagine the output of a gate overwriting an existing bit, but it is often simpler
to work with reversible computers. The NOT gate is reversible. Another example of a reversible
gate is the controlled-NOT or CNOT, which maps a pair of bits (x, y) to (x, x⊕y). Here ⊕ denotes
addition modulo 2.

1

x y x⊕ y

0 0 0

0 1 1

1 0 1

1 1 0

ircuits, computational universality means the ability to implement a
0, 1}n (the set of n-bit strings) to {0, 1}n. It turns out that NOT and
omputationally universal (proving this is a nice exercise; as a hint, t

For reversible c ny invertible
function from { CNOT gates
alone are not c hey generate
only transformations that are linear mod 2). For computational universality in reversible circuits,
we need some 3-bit gate. One convenient one is the Toffoli gate (named after its inventor, Tom
Toffoli), which maps (x, y, z) to (x, y, z⊕xy). If we start with (x, y, 1), then applying the Toffoli gate
yields (x, y, x NAND y). Since the Toffoli gate can simulate the NAND gate, it is computationally
universal.

There are not significant differences between the reversible and irreversible models, but the
reversible one will be a more convenient way to discuss quantum computing.

1.1 Complexity

The complexity of a function is the minimum number of gates required to implement it. Since the
exact number of gates is not very illuminating, and will in general depend on the details of the
computational model, we often care instead about how the complexity scales with the input size
n. For example, the time to multiply two n-bit numbers using the straightforward method requires
time O(n2), since this is the number of pairs of bits that have to be considered. The true complexity
is lower, since a more clever algorithm is known to multiply numbers in time O(n log(n)). Factoring
integers, on the other hand, is not something we know how to do quickly. The naive algorithm
to factor an n-bit number x requires checking all primes

√
≤ x, which requires checking ≈ 2n/2/n

numbers. A much more complicated algorithm is known (the number field sieve) which requires

time O(2n
1/3

), and modern cryptosystems are based on the assumption that nothing substantially
faster is possible.

In general, we say that a problem can be solved efficiently if we can solve in time polynomial
in the input size n, i.e. in time ≤ nc for some constant c > 0. So multiplication can be solved
efficiently, as well as many other problems, like inverting a matrix, minimizing a convex function,
finding the shortest path in a graph, etc. On the other hand, many problems besides factoring are
also not known to have any fast algorithms, of which one example is the “taxicab-ripoff problem”,
namely finding the longest path in a graph without repeating any vertex.

The strong Church-Turing essentially states that modern computers (optionally equipped with
true random number generators) can simulate any other model of computation with polynomial
overhead. In other words “polynomial-time” means the same on any platform.

1.2 The complexity of quantum mechanics

Feynman observed in 1982 that quantum mechanics appeared to violate the strong Church-Turing
thesis. Consider the state of n spin-1/2 particles. This state is a unit vector in (C2)⊗n = C2n ,
so to describe it requires 2n complex numbers. Similarly solving the Schrödinger equation on this
system appears to require time exponential in n on a classical computer.

2

Already this suggests that the classical model of computing does not capture everything in the
world. But Feynman then asked whether in this case a hypothetic quantum computer might be
able to do better. On pset 10, you will have the option of exploring a technique by which quantum
computers can simulate general quantum systems with overhead that is polynomial in the space
and time of the region being simulated.

2 Quantum computers

2.1 Qubits and gates

A quantum computer can be thought of as n spin-1/2 particles whose Hamiltonian is under our
control. A single spin-1/2 particle is called a qubit and we write its state as a0|0〉+ a1|1〉 (think of
|0〉 = | ↑〉 and |1〉 = | ↓〉 if you like, but |0〉 = |ground〉, |1〉 = |first excited〉 works equally well).
The state of two qubits can be written as

a00|00〉+ a01|01〉+ a10|10〉+ a11|11〉,

where we use |x1x2〉 as a shorthand for |x1〉 ⊗ |x2〉. And the state of n qubits can be written as

|ψ〉 =
∑

a~x|~x
~x∈{0,1}n

〉.

The power of quantum computing comes from the fact that acting on one or two qubits is
equivalent to applying a 2n × 2n matrix to the state |ψ〉. Let’s see concretely how this works.

If we have a single qubit and can apply any H we like for any time t, we can generate any
unitary matrix U = e∑−iHt. (Use units where ~ = 1.) This is because any unitary matrix U can be

2diagonalized as U = j=1 e
iθj |vj〉〈vj |, and so applying the Hamiltonian j −θj |vj〉〈vj | for time 1

will yield U .
What if we have two qubits? If we apply H to the first qubit then

∑
this is equivalent to the

two-qubit Hamiltonian H ⊗ I2. The resulting unitary is

V = e−i(H⊗I) = e−iH ⊗ I = U ⊗ I.

Similarly if we apply H to the second qubit, then this corresponds to the two-qubit Hamiltonian
I ⊗H, which generates the unitary operation I ⊗U . If we instead apply a two-qubit Hamiltonian,
then we can generate any two-qubit (i.e. 4× 4) unitary.

This does not scale up to general n-qubit unitaries. Instead we perform these by stringing
together sequences of one and two-qubit gates. Some important one-qubit gates (each of which is

3

both Hermitian and unitary, meaning their eigenvalues are 1,−1) are

X = σx =

0 1

1 0


0


Y = σy =

−i

i 0


Z = σz =

1 0

0 −1



1


H = √

2

1 1

1 −1

 =
1√ (x

x,y

∑
−1)xy

2
| 〉〈y|

∈{0,1}

The last gate H is known as the Hadamard transform and plays an important role in quantum
computing. It has the useful properties that HXH = Z and HZH = X.

An important two-qubit is the controlled-NOT gate, which is discussed further on pset 10.
How do these look when acting on n qubits? If we apply a one-qubit (2× 2) gate U to the jth

qubit, this results in the unitary
I⊗j−12 ⊗ U ⊗ I⊗n−j2 .

If we apply a two-qubit gate V to qubits j, j + 1, then we have the unitary

I⊗j−12 ⊗ V ⊗ I2
⊗n−j−1.

There is no reason two-qubit gates cannot be applied to non-consecutive qubits, but it requires
more notation, so we will avoid this.

One fact we will use later is that

H⊗n
1

= √
2

∑
x1,y1∈{0,1}

(−1)x1y1 |y1〉〈x1| ⊗
1√
2

∑
x2,y2∈{0,1}

(−1)x2y2 |y2〉〈x2| ⊗ · · · ⊗
1√
2

∑
xn,yn∈{0,1}

(−1)xnyn |yn〉〈xn|

=
1√ (1)x1y1+...+xnyn ~y ~x
2n n

− | 〉〈
~x,~y∈{

∑
|

0,1}

1
= √ (y

n
|~y〉〈~x

2
−1)~x·~ |

~x,~y∈{

∑
0,1}n

2.2 Quantum computing is at least as strong as classical computing

I claim that one and two-qubit gates can implement the quantum Toffoli gate. There is a construc-
tion with 6 CNOT gates and many single-qubit gates which I will not describe here. This means
that given the ability to do arbitrary one- and two-qubit gates, a quantum computer can perform
any classical reversible computation with asymptotically constant overhead.

This is good to know, but it is in going beyond classical computing that quantum comput-
ers become interesting. On the other hand, we may often want to use classical algorithms as a
subroutine.

If f : {0, 1}n → {0, 1}n is a reversible (i.e. invertible) function, then the corresponding unitary
is

U =

~x∈{

∑
|f(~x)

0,1}n
〉〈~x|.

4

3 Grover’s algorithm

Grover’s algorithm shows a quantum speedup for the simple problem of unstructured search. Sup-
pose that f is a function from {0, . . . , N − 1} → {0, 1} and our goal is to find some x for which
f(x) = 1. How many times do we need to evaluate f to find such an x? For simplicity, assume
that there is a single w for which f(w) = 1. (w stands for “winner.”) Evaluating f(x) for random
x will find w in an expected N/2 steps.

√Remarkably, quantum computers can improve this by a quadratic factor, and can find w using
O(N) steps.

The algorithm has two ingredients. First, we need to be able to implement the unitary

A =
∑

(−1)f(x)|x〉〈x| = I − 2|w〉〈w|.
0≤x<N

An explanation of how to do this is on pset 10. The unitary A can be thought of as a reflection
about the state |w〉.

Next, we will need to perform the reflection

B = 2|s〉〈s| − I,

where |s〉 = 1√ This
N

∑
0≤x<N |x〉 is the uniform superposition state. is closely related to the

problem of preparing |s〉. If N = 2n, then H⊗n|0n〉 = |s〉. (Here 0n is the string of n zeroes.)
Similarly B = (H⊗n)(2|0n〉〈0n| − I)(H⊗n). Thus the problem of implementing B reduces to that
of implementing I−2|0〉〈0|. This in turn, reduces (again using pset 10) to the problem of detecting
when a string is equal to the all-zeroes string, which is an easy classical computation.

Finally we can describe Grover’s algorithm. It is

• Start with |s〉.

• Apply AB T times, where T will be determined later.

• Measure.

The key to analyzing Grover’s algorithm is that we never leave the two-dimensional subspace
spanned by {|w〉, |s〉}. These vectors are linearly independent, but not orthogonal. To construct
an orthonormal basis from them, define

1|v〉 = √
N − 1

∑
x6=w
|x〉,

so that |s〉 =
√

N−1
N |v〉+ 1√ w

N
| 〉.

In the {|v〉, |w〉} basis we have1 0
A =

0 −1


1

B = 2|s〉〈s| − I 2


N −

= N

√
N−1
N

√
N−1
N

1
N

− I =

 1− 2
N

2
√
N−1
N

2
√
N−1
N

2
N − 1


AB =

 1− 2
N

2
√
N−1
N

−2
√
N−1
N 1− 2

cos(
=

N

   θ) sin(θ)

− sin(θ) cos(θ)


5

If N is large, then θ = sin−1(2
√
N − 1/N) ≈ 2/

√
N . Thus, after T = π/2

θ ≈
π
4

√
N steps, we have

rotated from |s〉 ≈ |v〉 to ≈ |w〉, and measuring will have a high probability of returning the correct
answer.

An alternate explanation of this rotation by O(1/
√

√ N) comes from the fact that we have reflected
across two lines which are at an angle of O(1/ N) with each other. See the blackboard for a
diagram.

4 Simon’s algorithm

Grover’s algorithm reduced O(N) time to O(
√
N) for a very general problem. Shor’s algorithm

offers a more dramatic speedup for a more specialized problem: finding the prime factors of a large
integer. As described above, the best known classical algorithms for factoring n-bit numbers require

1/3
time slightly larger than 2n . By contrast, a quantum computers could factor an n-bit number
using Shor’s algorithm in time O(n3).

The key ingredient of Shor’s algorithm is period-finding, meaning the problem of finding a given
the ability to evaluate a function f for which f(x) = f(x + a) for all x. This is straightforward,
but takes time, so first I’ll explain the algorithm which was one of the key pieces of inspiration for
Shor’s algorithm.

Let f be a function on {0, 1}n with the promise that f(~x) = f(~y) if and only if ~x
n

⊕ ~y = ~a for
some secret ~a ∈ {0, 1} . The goal of the problem is to find ~a.

Define Z2 = {0, 1} with + meaning ⊕. We can check that +, · satisfy all the usual properties
of addition and multiplication, and so Zn2 ∼= {0, 1}n is a vector space. We will see later why this is
a useful move.

Consider the following algorithm.

• Start with the uniform superposition

H⊗n|0n 1〉 = √ ~
2n

~x

∑
∈Zn
|x〉.

2

• Compute f and store the answer in a second register.

1√ ~x f(~x) .
2n

~x

∑
Zn
| 〉 ⊗ | 〉

∈ 2

• Measure the second register. Suppose the answer is α. Then we are left with a superposition
over all ~x such that f(~x) = α. By assumption, this state must have the form

|~x〉+ |~x+ ~a〉√ .
2

• Apply H⊗n to obtain
1√ ((1)~x·~y + (1)(~x+~a)·~y) ~y .

2n+1
− −

∈Zn
| 〉

~y

∑
2

• Measure, and obtain outcome y with probability

1
Pr[y] =

2n+1
(1 + (−1)~a·~y)2 =

{
1 if

2n−1 ~a · ~y = 0

0 if ~a · ~y = 1

6

Thus, this procedure gives us a random vector ~y that is orthogonal to ~a. After we have collected
n − 1 linearly independent such ~y we can determine ~a using linear algebra on Zn2 . After we have
collected k n 2 vectors ~y(1), . . . , ~y(k), the probability that a new ~y is in the span of ~y(1), . . . , ~y(k)

is 2n k
≤ −

− ≤ 1/4. Thus we need to run this entire procedure O(n) times in order to find ~a with high
probability.

By contrast, a classical algorithm would require ≥ 2n/2 evaluations of f in order to have a
non-negligible chance of finding ~a.

5 Shor’s algorithm

Suppose we’d like to
by all primes up to

√factor a large number N , say 2048 bits long. One approach is to try dividing
N . This takes a long time; on the order of 21024 for our example. The best

known classical algorithm is the General Number Field Sieve, which runs in time exp(log(N)1/3 ·
poly(log log(N))), and has not yet been used on numbers larger than 768 bits. By contrast, Shor’s
factoring algorithm runs in time O(log3(N)).

There are three main components to Shor’s algorithm.

1. First factoring is reduced to “period-finding” which means finding an unknown period of a
black-box function. This step uses number theory and not quantum mechanics.

2. A quantum algorithm for period-finding is given. It is similar to Simon’s algorithm but instead
of the Hadamard it uses a transform called the Quantum Fourier Transform (QFT).

3. Finally we describe an efficient circuit for the QFT.

We begin with the number theory part.

Euclid’s Algorithm. Given two integers y and z you can quickly find the greatest common
divisor gcd(y, z).

Given N choose a random 1 < a < N and assume gcd(a,N) = 1. (If not, we have already found
a nontrivial factor!) Define ord(a) to be the least positive integer r such that ar mod N = 1. Is
there always such an r? Yes, consider the sequence a, a2 mod N, a3 mod N, . . . This sequence must
eventually repeat. If ax ≡ ay mod N and y > x then ay−x ≡ 1 mod N . (This is not obvious but
can be proved using tools like the Chinese Remainder Theorem.)

Now suppose we have found r = ord(a). This means that ar − 1 = mN for some integer m.
Suppose that

• r is even, and

• ar/2 + 1 is not a multiple of N .

(If either of these fails, try another a. It turns out there is a reasonable probability that one of
kthese holds.) Suppose even more concretely that N = pk1

1 . . . p l . Thenl

(ar/2 − 1)(ar/2 + 1) = mpk1 k
1 . . . p l (1)l

and since ar/2 + 1 is not a multiple of N there must be some pj that divides ar/2 − 1. We can now
compute gcd(ar/2 − 1, N) using Euclid’s algorithm and we will find a nontrivial factor of N .

That’s it for the number theory. Now how do we find ord(a)? We use period finding! Define

f(x) = ax mod N. (2)

7

This has period r. Indeed

f(x+ r) = ax+r mod N = axar mod N = ax mod N = f(x). (3)

The intuition behind period finding is similar to what we did for Simon’s algorithm, although
now the Fourier transform is instead more like the traditional (i.e. U(1)) Fourier transform. Here’s
how this works. Choose n such that N2 ≤ 2n < 2N2. We will evaluate f(x) on x ∈ {0, 1, . . . , 2n−1}.

Before describing Shor’s algorithm we present a subroutine, the Quantum Fourier Transform.

1
UQFT|x〉 = √

2n−1
2 2ne πixy/ y . (4)

2n

∑
y=0

| 〉

This is a unitary transformation and I claim it can be performed using O(n2) gates. Let’s see how
we use it first and then show how to perform it next.

The quantum part of Shor’s algorithm consists of these steps:

• Prepare the state 1√ 2

2n

∑ n−1
x=0 |x〉 ⊗ |0〉.

• Calculate f(x) in the second register to obtain

1√
2n−1

f
2n

∑
=0

|x
x

〉 ⊗ | (x)〉.

• Discard the second register. (But we just calculated it!) We can think of this as measuring
the register and ignoring the answer. The first register will be in a superposition of the form

C(|x0〉+ |x0 + r〉+ |x0 + 2r〉+ . . .).

for a random choice of x0. Let’s make this more precise and say the state is

1√
m∑−1

r
m

|x0 + k 〉, (5)
k=0

with m ≈ 2n/r. At this point our superposition has period r. Think of this as a state with
period r in time. If we Fourier transform we should get a peak in frequency proportional to
1/r (in fact 2n/r for our discretized Fourier transform). Let’s now do the math and see that
this happens.

• Apply UQFT. This yields

1√
m∑−1 2∑n−1

ix0y/2n n
e2π e2πikr/2

m2n
k=0 y=0

|y〉. (6)

• Measure y. We find

1
Pr[y] =

m

m2n

∣∣∣∑−1∣ 2πikry∣ e
k=0

2n

∣∣∣∣∣
2

. (7)

8

To get some intuition for (7), suppose y ≈ 2nj/r for some integer j. Then the phase will
b∑e ≈ 1 and we will get Pr[y] ≈ m/2n = 1/r. Let’s argue this more precisely. Observe that

m−1
k=0 z

k = (1− zm)/(1− z). Consider y = 2nj/r + δj for |δj | ≤ 1/2. Then

1
Pr[y] =

m2n

∣∣∣∣∣∣
1− exp

(
2πimry

2n

)
21− exp
(

πiry
2n

)
∣∣∣∣∣∣
2

=
1

m2n

∣∣∣∣∣∣
1− exp

(
2πimrδj

2n

)
1− exp

(
2πirδj

2

2n

∣∣) ∣∣
1

∣ (8)

Using mr ≈ 2n and | − eiθ| = 2 sin(θ/2) we have

∣
1

Pr[y] ≈
m2n

sin2(πδj)

sin2(πδj/m)
≥ 1

m2n
(πδj/(π/2))2

(πδj/m)2
=

4

π2
1
. (9)
r

Therefore with probability ≥ 4/π2 we obtain j2n/r from which we can extract r.

• Extract r using more number theory. This part is a classical computation so I will not dwell on
it. From the last step we obtain y

2n = j
r+

δj
n for an unknown integer j and unknown |δj | ≤ 1/2.2

Since r < N and N2 ≤ 2n, finding the best rational approximation with denominator ≤ N
will do the job. This “best rational approximation” can be found by something called the
continued fraction expansion, which we illustrate with an example.

49

300
=

1
300
49

=
1

6 + 6
49

=
1

6 + 1
49
6

=
1

6 + 1
8+ 1

6

Rational approximations are obtained by truncating this series, e.g. 1/(6 + 1/8) = 8/49 ≈
49/300.

For the last twenty years there have been many attempts to generalize Shor’s algorithm to
other groups. In some cases these would break other cryptosystems. It is often possible to find
efficient quantum Fourier transforms for other groups but finding analogues of the continued fraction
expansion and the other ingredients has been elusive.

(n)
Finally let’s talk about how to implement UQFT. The superscript denotes the number of qubits.

When n = 1 this is just our old friend the Hadamard transform.

(1) 1
UQFT = √

1

2


1

1 −1



When n = 2 we get fourth roots of unity, namely

 
±i in addition to ±1:

(2) 1
UQFT = √

1 1 1 1

4

1 i −1 −i



1 −1 1 −1


1 −i −1 i


(n)


In general the matrix elements of UQFT look like exp(2πixy/2n). Let’s see how this looks in terms fo

the bits of x and y. Write x = x0+2x 1
1+4x2+ . . .+2n− xn 1 and similarly y = y +− 0 . . .+2n−1yn−1.

Then
xy mod 2n = x n

0y0 + 2(x1y0 + x0y1) + . . .+ 2 −1(x0yn−1 + . . .+ xn−1y0).

9

y
x 0
n−1 H R2 R . . .3 Rn−1 y0

xn−2 • y1

xn−3 • (n
U

−1) y2
. QFT

x0 • yn−1

Figure 1: Quantum circuit implementing the quantum Fourier transform.

ite x = 2n−1xn 1 + x̄ and y = 2ȳ + y− 0. Then

n 1 n 12πi2 x y 2πi2 x 2ȳ xn 1y0

Wr

1√
2n
e

2πixy
2n =

1√
2n
e

−
n−1 0

2n e
2πix̄y0

2n e
−

n−1
2n︸ ︷︷ ︸
1

e
2πix̄2ȳ

2n =
(−1) −
√

2
e

2πix̄y0 1)
2 〈 nn ȳ| (

U
−

QFT |x̄〉.

(n)
This suggests a recursive algorithm for UQFT which we express as a circuit diagram. See Fig. 1.
There we have defined the rotation gate

1 0
Rk ≡


0 e2πi/2

k

 . (10)

10

MIT OpenCourseWare
http://ocw.mit.edu

8.06 Quantum Physics III
Spring 2016

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Classical computing
	Complexity
	The complexity of quantum mechanics

	Quantum computers
	Qubits and gates
	Quantum computing is at least as strong as classical computing

	Grover's algorithm
	Simon's algorithm
	Shor's algorithm

