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1 Fermions and Bosons 

1.1 Introduction and two-particle systems 

Previously we have discussed multiple-particle systems using the tensor-product formalism (cf. 
Section 1.2 of Chapter 3 of these notes). But this applies only to distinguishable particles. In reality, 
all known particles are indistinguishable. In the coming lectures, we will explore the mathematical 
and physical consequences of this. 

First, consider classical many-particle systems. If a single particle has state described by 
position and momentum (rr, pr), then the state of N distinguishable particles can be written as 
(rr1, pr1, rr2, pr2, . . . , rrN , prN ). The notation (·, ·, . . . , ·) denotes an ordered list, in which different posi­
tions have different meanings; e.g. in general (rr1, pr1, rr2, pr2) = (rr2, pr2, rr1, pr1). 
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To describe indistinguishable particles, we can use set notation. For example, the sets {a, b, c}
and {c, a, b} are equal. We can thus denote the state of N indistinguishable particles as

{(~r1, p~1), (~r2, p~2), . . . , (~rN , p~N )}. (1)

(We can either forbid two particles from having exactly identical positions and momenta, or can let
{. . .} denote a multiset, meaning a set with the possibility of repeated elements.) This notation is
meant to express that the particles do not have individual identities, and that there is no physical
or mathematical difference between what we call particle 1, particle 2, etc.

In the quantum mechanical case, suppose we have N particles each with single-particle state
space given by a vector space V . If the particles were distinguishable the composite space would
be given by V ⊗N = V ⊗ · · · ⊗ V . For example, the spins of N spin-1/2 particles have state space
(C2)⊗N . The wavefunction of a N particles in 3-d is a function ψ(~r1, . . . , ~rN ) that maps R3N to
C. If S(R3) denotes well-behaved functions on R3 (formally called the Schwartz space), then this
N -particle state space is equivalent to S(R3)⊗N . If this were a wavefunction of indistinguishable
particles, then it is natural to guess that it should not change if we exchange the positions of the
particles, e.g. swapping ~r1 and ~r2. This turns out not to be quite true, since it may be that
swapping two positions could result in an unobservable change, such as multiplying by an overall
phase.

To be more concrete, consider the case of two indistinguishable particles. Then we should have
|ψ(~r1, ~r2)| = |ψ(~r2, ~r1)|, or equivalently

ψ(~r1, ~r2) = eiθψ(~r2, ~r1) (2)

for some phase eiθ. It is somewhat beyond the scope of this course to explain why the phase should
be independent of ~r1, ~r2, but I will mention that it relies on being in ≥ 3 spatial dimensions and
that richer behavior exists in 1 and 2 dimensions. A more general way to express (2) is by defining
the swap operator F by the relation

F (|α〉 ⊗ |β〉) = |β〉 ⊗ |α〉 (3)

for any single-particle states |α〉, |β〉. Then (2) is equivalent to

F |ψ〉 = eiθ|ψ〉. (4)

Since F 2 = I, its eigenvalues can only be ±1, and so we must have eiθ = ±1. The corresponding
eigenspaces are called the symmetric and antisymmetric subspaces, respectively, and are denoted

Sym2 V = ψ
2

{| 〉 ∈ V ⊗ V : F |ψ〉 = |ψ〉} (5a)

Anti V = {|ψ〉 ∈ V ⊗ V : F |ψ〉 = −|ψ〉} (5b)

Particles whose state space (for N = 2) is Sym2 V are called bosons and those with state space
Anti2 V are called fermions. The spin-statistics theorem states that particles with half-integer spin
(1/2, 3/2, etc.) are fermions and that particles with integer spin (0, 1, etc.) are bosons. The proof
of this involves field theory (or at least the existence of antiparticles) and is beyond the scope of
8.06 (but could conceivable be a term-paper topic).

To find a basis for the symmetric and antisymmetric subspaces, we can construct projectors
onto them, and apply them to a basis for V ⊗ V . Since F has eigenvalues ±1, Psym ≡ I+F

2 will
project onto the +1 eigenspace (i.e. the symmetric subspace) and Panti ≡ I−F will project onto the2
-1 eigenspace (the antisymmetric subspace). The overall space V ⊗V has a basis consisting of states
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|α〉⊗|β〉. We can assume that |α〉, |β〉 came from some orthonormal basis for V , so that in particular
α β + β αthey are either equal or orthogonal. Applying Psym we get |α〉 ⊗ |α〉 (if |α〉 = |β〉) or | 〉⊗| 〉 | 〉⊗| 〉2

(if |α〉, |β〉 are orthogonal). The latter state can be normalized to obtain |α〉⊗|β〉+|β〉⊗|α〉√ . Similarly if
2

we apply Panti to |α〉⊗ |β〉 α β β αwe obtain 0 if |α〉 = |β〉 or | 〉⊗| 〉−| 〉⊗| 〉√ after normalizing if
2

|α〉, |β〉 are

orthogonal. These states are all orthogonal to each other except for when we exchange |α〉 and |β〉,
in which case we get back either the same state (symmetric subspace) or the same state multiplied
by -1 (antisymmetric subspace).

If V is d-dimensional and has basis {|1〉, . . . , |d〉} then V ⊗ V is d2-dimensional and has basis
{|1〉 ⊗ |1〉, |1〉 ⊗ |2〉, . . . , |d〉 ⊗ |d〉}. Sym2 V has basis

α
α α : 1 α d

{
| 〉 ⊗ |β〉+ |β〉 ⊗ |α〉{| 〉 ⊗ | 〉 ≤ ≤ } ∪ √ : 1 ≤ α < β ≤ d

}
, (6)

2

where we have arbitrarily assumed that α ≤ β. We could have equivalently chosen α ≥ β, but
should not do both so that we do not double-count the same states. Similarly Anti2 V has basis{

|α〉 ⊗ |β〉 − |β〉 ⊗ |α〉√ : 1
2

≤ α < β ≤ d
}
. (7)

This has
(
d
2

) d(d= −1)
2 elements, corresponding to the number of ways of choosing two elements

from a d-element set. Similarly the basis for Sym2 V has d+
(
d
2

)
= d(d+1)

2 elements. We can check

that the dimensions add up: d(d+1)
2 + d(d−1) = d2. (But beware that this situation is unique to2

N = 2. For N > 2, V ⊗N contains states that are neither completely symmetric nor completely
antisymmetric. The situation then is beyond the scope of 8.06, but “Schur-Weyl duality” is the
phrase to google to learn more.)

Example: spin-1/2 particles. The simplest case is when d = 2. In this case, we use spin
notation and describe the single-particle basis with {|+〉, |−〉}. The resulting basis for Sym2 C2 is

{| + +〉, |+−〉+|−+〉√
2

, | − −〉} and the basis for Anti2 C2 is { |+−〉−|−+〉√ . These are referred to as the
2

triplet and singlet respectively.

1.2 N particles

Again if there are N distinguishable particles, then their joint state-space V ⊗N , where V is the
single-particle state space. A basis for this space is given by vectors of the form |α1〉 ⊗ · · · ⊗ |αN 〉.
To define the symmetric and antisymmetric subspaces, define the operator F i,j to swap tensor
positions i and j, i.e. if i < j then

F i,j |α1〉⊗· · ·⊗|αN 〉 = |α1〉⊗· · ·⊗|αi 1〉⊗|α− j〉⊗|αi+1〉⊗· · ·⊗|αj−1〉⊗|αi〉⊗|αj+1〉⊗· · · |αN 〉 (8)

(and the definition is similar if i > j). While these operators do not commute, we can define the
symmetric and antisymmetric subspaces to be their simultaneous +1 (resp. −1) eigenspaces:

SymN V ≡ {|ψ〉 ∈ V ⊗N : F ij |ψ〉 = |ψ〉 ∀i 6= j} (9a)

AntiN V ≡ {|ψ〉 ∈ V ⊗N : F ij |ψ〉 = −|ψ〉 ∀i 6= j} (9b)

The corresponding wavefunctions are those satisfying

ψ(~r1, . . . , ~ri, . . . , ~rj , . . . , ~rN ) = ±ψ(~r1, . . . , ~rj , . . . , ~ri, . . . , ~rN ) (10)

3



To compute bases for the symmetric and antisymmetric subspaces, we need to repeat our exercise
of defining the symmetric and antisymmetric projectors and then applying them to basis states.
This will be more complicated than the N = 2 case. Define SN to be the set of permutations of N
objects, i.e. the set of 1-1 functions from {1, . . . , N} to itself. |SN | = N ! since there for π ∈ SN
there are N ways to choose π(1), N − 1 ways to choose π(2) (i.e. any element of {1, . . . , N} not
equal to π(1)) N − 2 ways to choose π(3) and so on for π(4), . . . , π(N). For a permutation π define
the operator F π to the map sending each state |α1〉⊗ · · · ⊗ |αN 〉 to |απ−1(1)〉⊗ · · · ⊗ |απ−1(N)〉. One
particularly simple example of a permutation is a transposition, which exchanges two positions and
leaves the other positions untouched. The F ij operators above are the operators corresponding to
transpositions.

One useful fact about SN is that it is a group, meaning that it contains the identity permutation
(denoted e) and is closed under multiplication and inverse. In other words if π, ν ∈ SN then
applying ν then π is another permutation (denoted πν) and there exists a permutation π−1 satisfying
ππ−1 = π−1π = e. Additionally F π is a representation meaning that F πν = F πF ν . Verifying these
facts is a useful exercise. One consequence is that the sets {π : π ∈ SN} and {νπ : π ∈ SN} are the
same.

One can use these to show that the symmetric and antisymmetric projectors are given by

1
Psym ≡

N !

∑
π∈SN

F π and Panti ≡
1

sgn(
π

∑
π)F π. (11)

N !
∈SN

To prove this, we need to argue that ImPsym ⊆ SymN V and that if |ψ〉 ∈ SymN V then Psym|ψ〉 =
|ψ〉. For the former, an arbitrary element of ImPsym can be written as

1
Psym|ψ〉 =

N !

∑
π∈SN

Applying F ν yields

F ν
1

Psym|ψ〉 =
∑

F νF π
1 1|ψ〉 = F νπ ψ = F π ψ = Psym ψ .

N ! N !

∑
| 〉

N !

∑
| 〉 | 〉

π∈SN π∈SN π∈SN

The third equality used the fact that π 7→ νπ is a 1-1 map. Next suppose that |ψ〉 ∈ SymN V .
Then

1
Psym|ψ〉 =

N !

∑
F π

1|ψ〉 = ψ = ψ ,
N !

〉
π∈SN

∑
| 〉 |

π∈SN

where the second equality used the fact that F π|ψ〉 = |ψ〉 for all |ψ〉 ∈ SymN V .
The argument for the antisymmetric projector is similar, but we first need to define sgn(π),

which is called the sign of a permutation. It is defined to be 1 if π can be written as a product
of an even number of transpositions or -1 if π can be written as a product of an odd number of
transpositions. For example, for N = 3, sgn(π) = 1 if π is the identity permutation, or a cycle
of length 3, such as 1 → 2 → 3 → 1; in fact, sgn(π) = επ1π2π3 ijk

symbol. It is not clear that sgn(π) is well-defined: π can be written as a product of transpositions
in an infinite number of ways, and what if some of them involve an even number of transpositions
and some involve an odd number? It turns out that this never happens. To prove this, an alternate
definition of sgn(π) can shown to be

sgn(π) = det

(∑N
i=1

|i〉〈π(i)|

)
, (12)

4
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which suffers from no such ambiguity. As an example of (12), the permutation which swaps 1 and

0 1
2 has sign −1, which equals det

  . Similarly any single transposition has sign −1 according
1 0

to (12) and the multiplication rule for determinants (det(AB) = det(A)det(B)) can be used to
show that these two definitions of sgn(π) are equivalent. Like the determinant, the sgn function
obeys sgn(νπ) = sgn(ν) sgn(π) for any permutations ν, π. This can be used to prove that Panti is
the projector onto the antisymmetric subspace, using an argument similar to the one used for Psym

and the symmetric subspace.
As a result, we can write a basis for SymN V consisting of the states

|ψsym
α1,...,α =

N
〉 N

∑
|απ(1)〉 ⊗ · · · |απ(N)〉. (13)

π∈SN

Here N is a normalization term that is equal to N !−1/2 if the α1, . . . , αN are all distinct, equal to
1 if they are all the same, and in general will be somewhere between these two extremes. Similarly
AntiN V has a basis consisting of the states

|ψanti 1
α1,...,α 〉 = √

∑
sgn(π)|απ(1)〉 ⊗ · · · |α .

N π(N)
N !

〉 (14)
π∈SN

Since these are always zero if any of the αi’s are equal, the normalization is always √1 .
N !

For spatial wavefunctions, there is a useful formula for 〈~r anti
1, . . . , ~rN |ψα1,...,αN

〉 derived by John
Slater in 1929. First we recall a formula for the determinant of a matrix

det(A) =
∑

sgn(π)A1,π(1)A2,π(2) . . . AN,π(N). (15)
π∈SN

Using this and the notation ψα(~r) = 〈~r|α〉, it is straightforward to show that

ψα1(~r1) · · · ψα1(~rN )
. .〈~r1, . . . , ~rN |ψanti

α1,...,α 〉 = det
N

 
 . .. .

ψαN (~r1) · · · ψα


. (16)

N (~rN )


This is called a Slater determinant. For example when N = 2, the wavefunction is of the form

ψα1(~r1)ψα2(~r2)− ψα2(~r1)ψα1(~r2)√ . (17)
2

1.3 Non-interacting particles

So far we have described only the state spaces. Now we begin to consider Hamiltonians. If H is
a single-particle Hamiltonian (i.e. a Hermitian operator on V ) then define Hi to be H acting on
system i (in an N -particle system):

H ≡ I⊗i−1 ⊗H ⊗ I⊗N i
i

− . (18)

If we have N particles each experiencing Hamiltonian H (e.g. N spins in the same magnetic field)
then the total Hamiltonian is

N

H =
∑

Hi. (19)
i=1

5
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Suppose that the eigenvalues and eigenstates of H are given by

H|α〉 = Eα|α〉

with E0 ≤ E1 ≤ . . .. Then what is the spectrum of H? There are three cases.

1.3.1 Distinguishable particles

The overall space is V ⊗N which has a basis consisting of all states |α1〉⊗ · · · ⊗ |αN 〉 that are tensor
products of single-particle energy eigenstates. Since

Hi|α1〉 ⊗ · · · ⊗ |αN 〉 = Eαi |α1〉 ⊗ · · · ⊗ |αN 〉,

it follows that
H|α1〉 ⊗ · · · ⊗ |αN 〉 = (Eα1 + . . .+ EαN )|α1〉 ⊗ · · · ⊗ |αN 〉. (20)

Thus {|α1〉 ⊗ · · · ⊗ |α N
N 〉} is an orthonormal basis of eigenstates of H. The ground state is |0〉⊗ ,

which has energy NE0. The first excited subspace is N -fold degenerate and consists of all of the
states of the form |1, 0, 0, . . . , 0〉, |0, 1, 0, . . . , 0〉, etc. It has energy (N−1)E0 +E1. A general energy
level with all αi distinct similarly has degeneracy N !, even aside from the possibility of obtaining
the same total energy by adding up different collections of Eα’s.

1.3.2 Bosons

The ground state is still |0〉⊗N , or equivalently | symψ0,0,...,0〉, and the ground state energy is still NE0.
Again the energy of the first excited state is (N − 1)E0 +E1. But now there is no degeneracy. The
first excited state is

sym |1, 0, 0, . . . , 0〉+ |0, 1, 0, . . . , 0〉+ . . .+ |0, 0, 0, . . . , 1〉|ψ1,0,...,0〉 = √ . (21)
N

symWe could write |ψ0,1,...,0〉 or any other subscript with N − 1 0’s and one 1, but these all refer to
exactly the same state. Similarly all the same energies Eα1 + . . .+EαN still exist in the spectrum of
H restricted to SymN V , but the degeneracy of up to N ! is now gone. Specifically state | symψα1,...,αN 〉
has energy Eα1 + . . .+EαN . Since these are a basis for SymN V we know we have thus accounted
for the entire spectrum.

1.3.3 Fermions

Now things are substantially different. The state |0〉⊗N is no longer legal, and so the ground state
energy is going to be different. If we use the basis given by {|ψanti

α1,...,αN
〉}, we see that this is already

an eigenbasis with state |ψanti
α1,...,αN

〉 having energy Eα1 + . . . + EαN . So far this is the same as in
the boson case except that we must now have all the αi distinct. Without loss of generality we can
assume α1 < α2 < . . . < αN . As a result, αi ≥ i − 1 and the energy is ≥ E0 + E1 + . . . + EN−1.
This energy is achieved by the state |ψanti

0,1,...,N 1〉 which must be the unique ground state. The first−
excited state is |ψanti

0,1,...,N 2,N 〉 which has energy E0 +E1 + . . .+E− N−2 +EN . Both of these are non-
degenerate unless there are degeneracies in the single-particle spectrum. One way to interpret the
first excited state is that we have added a particle with state |N〉 and a “hole” (meaning the absence
of a particle) with state |N − 1〉. Higher excited states can be found by moving the particle to
higher energies (e.g. |ψanti anti

0,1,...,N 2,N+1〉), moving the hole to lower energies (e.g. |ψ− 0,1,...,N−3,N )
anti

−1,N 〉
or creating additional particle-hole paris (e.g. |ψ0,1,...,N−3,N,N+1〉). Holes are studied in solid-state
physics, and were the way that Dirac originally explained positrons (although this explanation has
now been superseded by modern field theory).
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1.4 Non-zero temperature

Let us calculate the thermal state e−βH/Z for N non-interacting fermions or bosons.
The eigenstates can be labeled by occupation numbers n0, n1, n2, . . . where ni is the number of

states with energy Ei. For fermions ni can be 0 or 1, while for bosons, ni can be any nonnegative
integer.

Here it is easiest to work with the grand canonical ensemble. In this, the probability of a
microstate with energy E and N particles is proportional to e−β(E−µN) where β = 1/kBT and
µ is the chemical potential. We can think of this as resulting from the system being in thermal
contact with a reservoir containing many particles each with energy µ. Alternatively, we can
maximize entropy subject to energy and particle number constraints and then β, µ emerge as
Lagrange multipliers.

For us, the benefit will be that the probability distribution factorizes. We find that the proba-
bility of observing occupation numbers n0, n1, . . . is

exp(−β
∑

i ni(Ei − µ)) exp(−β
∑

i ni(Ei − µ))
Pr[n0, n1, . . .] = = , (22)

Z n′ ,n exp(′ ,...0 1
−β i n

′
i(Ei − µ))

where in the sum each n′i ranges over 0,1 (for fermions)

∑
or over all nonnegativ

∑
e integers (for bosons).

Either way this factorizes as

e−βni(Ei−µ)

Pr[n0, n1, . . .] =
∏∑ . (23)

e−βn
′(Ei−µ)i

i≥0 n′i

In other words, each occupation number is an independent random variable.
For fermions this results in the Fermi-Dirac distribution.

1 e−β(Ei−µ)

Pr[ni = 0] = and n = Pr[n = 1] = , (24)
1 + e− i−µ)

〈 i iβ(E
〉

1 + e−β(Ei−µ)

while for bosons we obtain the Bose-Einstein distribution.

Pr[n ] = e−βni(Ei µ
i

− )(1− e−β(Ei−µ)) (25)

1〈ni〉 = . (26)
eβ(Ei−µ) − 1

Note that for bosons we require µ < Ei but for fermions this is not necessary.
The Fermi-Dirac occupation number can be rewritten as

1〈ni〉 = . (27)
1 + eβ(Ei−µ)

As β → ∞ this approaches a step function which is ≈ 1 for Ei < µ and ≈ 0 for Ei > µ. Thus in
the zero-temperature limit we will fill levels with energy up to some limit µ and no levels above
this energy.

1.5 Composite particles

Usually particles have multiple attributes with distinct degrees of freedom, e.g. their positions and
their spins. These are combined by tensor product, so we can write the state of a single electron
as |ψelectron〉 = |ψspatial〉 ⊗ |ψspin〉. This division is often somewhat arbitrary, as in the case of
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electrons in hydrogen-like atoms, where the state could be written either as |n, l,m, s〉 or (dividing
into spatial and spin parts) as |n, l,m〉 ⊗ |s〉.

More generally, suppose the state space of a single particle is V ⊗W . Then the state of N
distinguishable particles is

(V ⊗W )⊗N ∼= V ⊗N ⊗W⊗N . (28)

This isomorphism is proved by simply rearranging the terms in the tensor product V ⊗W ⊗ V ⊗
W ⊗ · · · ⊗ V ⊗ W so that all the V ’s precede all the W ’s. For example, for N distinguishable
particles in a −1/r potential (e.g. imagine a proton surrounded by an electron, a muon, a tau
particle, and, well, let’s just take N to be 3) we could just as well use the basis

{|n1, l1,m1, s1, . . . , nN , lN ,mN , sN 〉} (29)

corresponding to (V ⊗W )⊗N or the basis

{|n1, l1,m1, . . . , nN , lN ,mN 〉 ⊗ |s1, . . . , sN 〉} (30)

corresponding to V ⊗N ⊗W⊗N .
For fermions and bosons, the situation is not quite so simple since SymN (V ⊗W ) ∼= SymN V ⊗

SymN W and AntiN (V ⊗W ) ∼= AntiN V ⊗AntiN W .
Let us focus for now on the case of N = 2. Then

Anti2(V ⊗W ) = {|ψ〉 ∈ V ⊗W ⊗ V ⊗W : F 12:34|ψ〉 = −|ψ〉}, (31)

where F 12:34 is the permutation that swaps positions 1,2 with positions 3,4. That is

F 12:34|α1, α2, α3, α4〉 = |α3, α4, α1, α2〉. (32)

What if we would like to understand Anti2(V ⊗W ) in terms of the symmetric and antisymmetric
subspaces of V ⊗2 and W⊗2? Then it will be convenient to rearrange (31) and write (with some
small abuse of notation)

Anti2(V ⊗W ) = {|ψ〉 ∈ V ⊗ V ⊗W ⊗W : F 13:24|ψ〉 = −|ψ〉}, (33)

where F 13:24 is the permutation that swaps positions 1,3 with positions 2,4, meaning

F 13:24|α1, α2, α3, α4〉 = |α2, α1, α4, α3〉. (34)

Since F 13:24 squared is the identity, its eigenvalues are again 1. We can also write F 13:24 =
F 1:2 3:4

±
F , where

F 1:2|α1, α2, α3, α4〉 = |α2, α1, α3, α4〉. (35a)

F 3:4|α1, α2, α3, α4〉 = |α1, α2, α4, α3〉. (35b)

Since F 1:2 and F 3:4 commute, the eigenvalues of their product are simply the product of their
eigenvalues. The joint eigenspaces are as follows

F 12:34 F 1:2 F 3:4

+1 +1 +1

−1 +1 −1

−1 −1 +1

+1 −1 −1

8
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Thus the −1 eigenspace of F 13:24 contains states in the +1 eigenspace of F 1:2 and the −1 eigenspace
of F 3:4. It also contains states in the −1 eigenspace of F 1:2 and the +1 eigenspace of F 3:4, as well
as superpositions states in these two spaces. Putting this together we have

Anti2(V ⊗W ) ∼= (Sym2 V ⊗Anti2W )⊕ (Anti2 V ⊗ Sym2W ). (36)

Similarly the symmetric subspace of two copies of V ⊗W is

Sym2(V ⊗W ) ∼ (Sym2 V ⊗ Sym2W )⊕ (Anti2 V ⊗Anti2= W ). (37)

As an application, a pair of electrons must have either a symmetric spatial wavefunction and an
antisymmetric spin wavefunction (i.e. singlet), or vice versa, an antisymmetric spatial wavefunction
and a symmetric spin wavefunction. This can lead to an effective spin-spin interaction, and is
responsible for the phenomenon of ferromagnetism, which you will explore on your pset.

1.6 Emergence of distinguishability

Given that all types of particles are in fact either bosons or fermions, why do we talk about
distinguishable particles? Do they ever occur in nature? It would seem that they do, since if we
have N spatially well-localized electrons, we can treat their spins as distinguishable. In other words,
we say that the wavefunction is

|ψ〉 =
∑

cs1,...,sN |s1, . . . , sN 〉, (38)

s1,...,sN∈{+,−}

with∑ no constraints on the amplitudes cs1,...,sN apart from the usual normalization condition
|cs1,...,sN |2 = 1. A Hamiltonian that acts only on spin 2 (say) would be of the form I⊗H⊗I⊗N−2.
Let us examine carefully how this could be realized physically. Assume the electrons are in a

potential that traps them in positions that are far from each other. Denote the resulting spatial
vectors by |1〉, |2〉, . . . , |N〉 corresponding to wavefunctions ψ1(~r), . . . , ψN (~r). If we had one electron
in position |1〉 with spin in state |s1〉, another electron in position |2〉 with spin in state |s2〉, and
so on, then the overall state would be

1√
∑

sgn(π)|π(1)〉 ⊗ |sπ(1)〉 ⊗ |π(2)〉 ⊗ |sπ(2)〉 ⊗ · · · ⊗ |π(N) sπ(N) . (39)
N !

〉 ⊗ | 〉
π∈SN

A general superposition of states of this form with different values of s1, . . . , sN would be

|Ψ〉 =
∑ 1

cs1,...,sN √
∑

sgn(π)|π(1)〉⊗|sπ(1)〉⊗|π(2)〉⊗|sπ(2)〉⊗· · ·⊗|π(N)
N !

〉⊗|sπ(N)〉.
s1,...,sN∈{+,−} π∈SN

(40)
This wavefunction is manifestly antisymmetric under exchanges that swap the spatial and spin
parts together.

To see how (38) emerges from (40) consider an experiment that would try to apply a Hamiltonian
to, say, the spin of the 2nd particle. When we say “the second particle” what we mean is “the
particle whose position in space corresponds to the wavefunction ψ2(~r).” For example, if we want
to apply a magnetic field that affects only this particle, we would apply a localized magnetic field
that is nonzero only in the region where ψ2(~r) is nonzero and ψi(~r) = 0 for i = 2. (Here we use the
assumption that the electrons are well separated.) Suppose this field is Bz ẑ in this region and zero
elsewhere. This field would correspond to a single-particle Hamiltonian of the form |2〉〈2| ⊗ ωzSz

9
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for ωz = −µeBz, where the |2〉〈2| means that it affects only the part of the wavefunction in spatial
state |2〉. The resulting N -particle Hamiltonian is

N

H =
∑

(I I)⊗i−1 ( 2 2 ωzSz) (I I)⊗N−i. (41)
i=1

⊗ ⊗ | 〉〈 | ⊗ ⊗ ⊗

Observe here that the tensor position has no physical significance, but that different particles are
effectively labeled by their spatial positions. Imagine a law-school professor who calls on students
by seat number instead of by name.

A similar argument could apply toN bosons. In each case, the states involved are not completely
general states of N fermions/bosons. Returning to the case of electrons, we are considering states
with exactly one electron per site. But states also exist with zero or two electrons in some sites
(or superpositions thereof). If we have apply a magnetic field to a site where there is no electron,
or bring a measuring device (say a coil to detect a changing magnetic field) nearby, then nothing
will happen. What if there are two electrons on a site? Then again nothing will happen, but for
a less obvious reason. This time is it because the spin singlet state is invariant under collective
rotation, and will not be affected by a magnetic field. Overall it is possible to observe behavior that
is more complicated than in the model of N distinguishable spins. Spatial position can be used to
distinguish particles, but it does not have to in every case.

2 Degenerate Fermi gas

2.1 Electrons in a box

Consider N electrons in a box of size L × L × L with periodic boundary conditions. (Griffiths
discusses hard-wall boundary conditions and it is a good exercise to check that both yield the same
answer.) Ignore interactions between electrons. Then the Hamiltonian is

N
p~2

H =
∑

i . (42)
2m

i=1

We will see that even without interactions, a good deal of interesting physics will result simply from
the Pauli exclusion principle. This is because the N -electron ground state will occupy the lowest
N levels of the single-electron Hamiltonian p~2/2m.

To analyze this, we start with the one-particle states. The eigenstates and energies are given
by

~
eik·~r 2π~ψ~ (~r) = where k = ~n, ~n

k L3/2
∈ Z3. (43)

~2
~E~ = k2 ~2

=
k 2m 2m

( ) L
22π
~n2. (44)

L

~The allowed values of k form a lattice with a spacing of 2π/L between adjacent points. However,
we will work in the limit where L and N are large; e.g. in macroscopic objects N will be on the
order of 1023. In this limit, we can neglect the details of the lattice and say instead that the there

~is one allowed wavevector per (2π/L)3 volume in k-space (or two if we count spin). It is left as an
exercise to make this intuition precise.

Because of the spin degree of freedom, N electrons in their ground state will fill up the lowest
~ ~ ~N/2 energies, corresponding to the k with the lowest values of k2. These k vectors are contained in

10



a sphere of some radius which we call kF (aka the Fermi wave vector). Since each wavevector can
~be thought of as taking up “volume” (2π/L)3 in k-space, we obtain the following equation for kF :

34
πk3 L

3 F ·
(

2π

)
· 2 = N (45a)

3(3π2N)1/3 1/N
kF = = (3π2)1/3

L

(
V

)
= (3π2n)1/3 (45b)

The fact that kF (in this calculation) depends only on the density n = N/V reflects the principle
that kF is independent of the shape of the material.

From this calculation we can immediately derive many physically relevant quantities. The
chemical potential is the energy associated with adding one electron to the system, i.e. µ =
Egs(N + 1)− Egs(N). Since this new electron would have momentum ≈ ~kF , its energy (which is
also the chemical potential) is

~2k2

EF = F . (46)
2m

This energy is also called the Fermi energy.
We can also calculate the ground-state energy. Here is a way to do this that is simple enough

that you should be able to recreate it in your head. First recalculate the number of particles in
terms of kF as

kF 3L kF k3

N =

∫
2 ·
( )

(4πk2dk) =

∫
ck2dk = c F , (47)

0 2π 0 3

for some constant c. Similarly write Egs as∫ kF
(
L
)3 2 2 ∫ kF k5

2 ~ k2 ~ 4 ~2
F ~2k2

F 3 3
Egs = 2

0
· (4πk dk) = ck dk = c = N = NEF . (48)

2π 2m 2m 0 2m 5 2m 5 5

In hindsight we should have guessed that Egs would be some constant times NEF . There are N
electrons, each with energy somewhere between 0 and EF depending on their position within the

k4
sphere. So the only nontrivial calculation was to get the constant 3 dk

, which boils down to .5

Now consider the volume-dependence of the energy. The ground-state energy is prop

∫

2/3

∫
k2dk

ortional
to EF , which in turn scales like n , or equivalently, like V −2/3. Thus there is pressure even from
non-interacting fermions. This pressure has many equivalent forms

∂Egs

∣∣∣ 3 ∂EF 3
(

2
)
E 2E 2 2/3

− ∣ − − − F 2 gs (3π )
P = = N = N = nEF = = ρ5/3, (49)

∂V 5 ∂V 5 3 V 5 3 V 5m8/3
N,T

where in this last version we have defined the (mass) density ρ = mn.
Let’s plug in some numbers for a realistic system. In copper, there is one free electron per

atom. The density is about 6g/cm3 and the atomic weight is 63g/mole, which corresponds to
n ≈ 1023/cm3. An electron has mass 511keV (working in units where ~ = 1 and c = 1). In these
units 1cm ≈ 5 · 104eV −1. Putting this together we get EF = O(1)eV .

This is � kBT for room-temperature T , justifying the assumption that the state is close to the
ground state as room temperature, and corresponds to a vF =

√
2EF /m that is � c, justifying a

non-relativistic approximation.
Can we justify neglecting the Coulomb interaction? See the pset.
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The Drude-Sommerfeld model. This model of a metal is simple but is already enough to
derive the Drude-Sommerfeld model that explains thermal and electrical conductivity, heat capacity
and thermal emission. On the other hand, adding a periodic potential (see below) will somewhat
complicate this picture.

I will briefly describe the Drude-Sommerfeld model first. One goal is to explain Ohm’s Law

~ ~J = σE, (50)

~ ~where E is the electric field, J is current and σ is conductivity. (Here σ will be a scalar but more
generally it could be a 3 × 3 matrix.) Suppose that electrons accelerate ballistically for a typical
time τ before a collision which randomizes their velocity. In the absence of a collision they will
accelerate according to

˙ ~m~v = eE, (51)

so their mean velocity will be
e ~~vd = Eτ. (52)
m

Here we write ~vd to mean the “drift” velocity of an electron. The actual velocity will include
thermal motion as well but this averages to zero. The net current is ne~vd, where n is the electron
density. Putting this together we obtain

ne2τ
σ = . (53)

m

One unsatisfactory feature of this model is the presence of the phenomenological constant τ .
On the other hand, a similar calculation (omitted) can express thermal conductivity κ in terms of
τ , and predicts that the “Lorentz number” κ should be a universal constant. Modeling electronsσT

as a classical gas predicts that this number should be ≈ 1.1 × 10−9 watt - ohm
K2 and modeling them

as a Fermi gas predicts ≈ 2.44 × 10−8 watt - ohm
2 . In real metals, this number is much closer to the

K
Fermi gas prediction, which provides some support for the Drude-Sommerfeld theory.

There are some other aspects of the theory which are clearly too simplistic. The mean free
path ` ≡ τvF is hundreds of times larger than the spacing between atoms. Why aren’t there more
frequent collisions with the atomic lattice or the other electrons? There are qualitative problems
as well. While (53) does not depend on the sign of the charge carriers, the Hall effect (discussed
later) does. Observations show that most materials have negative charge carriers but some have
positive charge carriers. Another strange empirical fact is that some crystals are conductors and
others are semiconductors or insulators; overall, resistivity varies by more than a factor of 1020.
The conductance is also temperature dependent, but not always in the same direction: raising
temperature will reduce the conductivity of metals but increase it for semiconductors such as
silicon and germanium.

Explaining these facts will require understanding periodic potentials, which we will return to
in Section 2.3.

2.2 White dwarves

Our sun is powered by fusion, primarily via the p-p process:

4H 7→ 4He+ 2e+ + 2e− + 2νe + heat.

This creates thermal pressure outward which balances the inward gravitational pressure. When
the hydrogen runs out, helium can further fuse and form carbon and oxygen. In larger stars

12



this will continue producing until iron is formed (heavier elements are also produced but do not
create more energy), but eventually fusion will stop. At this point the heat will be radiated away,
the temperature will drop and gravity will cause the star to dramatically shrink. This will not
necessarily end in a black hole due to the degeneracy pressure of the electrons.

We will model the star by a collection of noninteracting nonrelativistic electrons in their ground
state. There are a lot of assumptions here. The ground-state assumption is justified because
photons will carry away most of the energy of the star. The non-interacting assumption will be
discussed on the pset. We consider only electrons and not nuclei because degeneracy pressure scales
with EF ∝ 1/m, although we will revisit this, as well as the nonrelativistic assumption, later in
the lecture. We assume also a uniform density which is not really true, but does not change the
qualitative picture.

For a given stellar mass M we would like to find the radius R that balances the gravitational∗ ∗
pressure with the electron degeneracy pressure. We can find this by computing the total energy
Etot and setting dEtot/dR = 0. The resulting value of R is a stable point if d2E∗ tot/dR

2 < 0.
The free parameters are:

• N , the number of nucleons (protons and neutrons). These each have mass roughly mp ≈
109eV/c2 and carry most of the mass of the star, so that M∗ ≈ Nmp.

• f , the fraction of electrons per nucleon. Charge balance means that there are Ne ≡ fN
electrons, fN protons and (1− f)N neutrons, and in particular that 0 ≤ f ≤ 1.

Let’s calculate the energy contribution from gravity. We will make use of the density ρ ≡ M
4
∗ .

πR3
3∫ R GN (mass enclosed by radius r)(mass at distance r)

Egrav(R) =
0
− dr∫ r

R GN 4
=

0
− πr3ρ 4πr2ρdr

r 3

= . . .

3 M2

= − GN
∗

5 R
κN2

≡ − ,
R

where in the last step we have defined the universal constant κ = 3GNm
2.5 p

On the other hand the energy from electron degeneracy is

3
Edegen(R) = Egs = NeEF (R)

5
2/3

3 ~2
(

3π2Ne
= Ne

5 2me V

)
(

2 5/3

(
3
)( 2/39π N

= ~ f
10 4

) )
5/3 λN5/3

, = ,
m R2
e meR2

≡λ

where again λ is a universal constan

︸
t. For f =

︷︷
0.6 (as is the

︸
case for our sun) we have λ ≈ 1.1~2.

Combining these we have
λN5/3 κN2

Etot(R) =
meR2

− . (54)
R
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Figure 1: Plot of (54) showing energy from gravity and degeneracy pressure as a function of radius.

This is plotted in Fig. 1.
Setting dEtot(R)/dR = 0 we find

2λ
R = N−1/3 . (55)∗

meκ

On the pset you will plug in numbers showing that for M = MSun the radius is R ≈ REarth. Thus,∗ ∗
this predicts an enormous but finite density.

One strange feature of (55) is that as N increases (equiv. as M increases), the radius R∗ ∗
decreases. This means as the star gets larger it approches infinite density. This clearly cannot be
valid indefinitely.

Let’s revisit the non-relativistic assumption. This is valid if

v 1/3 1/3 1/3 2

� F ~kF ~n ~N ~N G m
1 =

c mec
∼

mec
∼
mecR

∼ N
N2/3 p

m2 = N2/3.
m c λ −1/3

∼
~c p

e N m2
meκ Pl

In the last step we have introduced the Planck mass mPl which is the unique mass scale associated
with the fundamental constants GN , ~, c. Thus the critical value of N at which the non-relativistic
assumption breaks down is

Ncrit ∼
(
mPl

mp

)3

≈ 1057.

≈ ≈ · eV/c2The critical mass is Mcrit = Ncritmp 1066eV/c2. By contrast MSun 2 1030kg · 6 · 1035
kg ≈

1066eV/c2 which is right at the threshold where the non-relativistic assumption breaks down.

2.2.1 A relativistic free electron gas

We follow the same approach as before but instead of E = ~2k2/2m we have

E =

√
~m2

ec
4 + ~2k2c2 ≈ ~c|~k|.
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expands until non-relativistic collapses to neutron star or black hole

Figure 2: Plot of (56) showing the total energy from gravity and degeneracy pressure of a relativistic
free electron gas.

~The first expression is the exact energy valid for all k and the latter is the ultra-relativistic limit
which is relevant when ~|~k| � mec. In this case the lowest energy states are still those with |~k| ≤ kF
for some threshold kF , but the modified form of EF means we now have

3

gs

∫ kF L
E = 2

0

(
2π

)
4πk2dk ~ck︸

Ne=

︷︷
3V k
F
23π

V ~c

︸
= k4

4π2 F

N4/3

= κ′
V 1/3

where κ′ ≡ 3
4

(
9π
4

)1/3
f4/3~c. Now the total energy is

κN2 κ′N4/3 Λ
Etot = − +

R R
≡ . (56)
R

The situation is now much simpler than in the non-relativistic case. If Λ < 0 then the star collapses
and if Λ > 0 then the star expands until the electrons are no longer ultra-relativistic. See Fig. 2.

The critical value of N at which Λ = 0 occurs when κN2 = κ′N4/3. Rearranging we find that

this is at Nc = (κ′
m3

/κ)3/2. The corresponding mass turns out (using f = 0.6 and MSun = Pl
m2 ) to be
p

Mc = mpNc ≈ 1.4MSun. This bound is called the Chandrasekhar limit. (Actually the true bound
drops some of the simplifying assumptions, such as constant density, but it is not far off from what
we have estimated.)

We now can predict the fate of our sun: it will become a white dwarf. What happens when
Λ < 0? In this case a white dwarf will collapse but not necessarily to a black hole. At high densities
the reaction e− + p+ 7→ n + ν will convert all the charged particles into neutrons. Neutrons are
fermions and have their own degeneracy pressure. The analogue of a white dwarf is a neutron star,
which is supported by this neutron degeneracy pressure. We now repeat the above calculation but
with f = 1 and with me replaced by mp. It turns out that neutron stars are stable up to masses
of roughly 3.0MSun (although this number is fairly uncertain in part because we don’t know the
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structure of matter in a neutron star; it may be that the quarks and gluons combine into more
exotic nuclear matter). Above 3.0MSun there is no further way to prevent collapse into a black
hole.

M

black
hole

neutron star

white dwarf

3.0MSun

1.4MSun

0

Besides our sun, some representative stars are Alpha Centauri A at 1.1 solar masses, destined
to be a white dwarf, and Sirius A at 2.0 solar masses, destined to be a neutron star.

2.3 Electrons in a periodic potential

This lecture will explore how degenerate fermions can explain electrical properties of solids. In a
solid, atomic nuclei are packed closely together in (roughly) fixed positions while some electrons
are localized near these nuclei and some can be delocalized and move throughout the solid. We
model this by grouping together the nuclei and localized electrons as a static potential V (~x), while
assuming the delocalized electrons are subject to this potential but do not interact with each other.
In other words, we add a potential but still do not consider interactions. This model is simple but
already contains nontrivial physics. The resulting Hamiltonian is

N

H =
∑ p~2

i

i=1

+ V (~xi).
2m

We will see that this gives rise to band structure, which in turn can explain insulators, conductors
and semiconductors all from the same underlying physics.

2.3.1 Bloch’s theorem

Suppose at first that we have a single electron in a 1-d lattice with ions spaced regularly at distance
a. The resulting potential is periodic and satisfies

V (x) = V (x+ a) (57)

ˆfor all x. We can express this equivalently in terms of the translation operator Ta defined by
ˆ ˆ ˆ ˆ ˆ ˆ ˆTaψ(x) = ψ(x+a). Since [Ta, V ] = 0 we have [T ,H] = 0 and thus Ta and H can be simultaneously

ˆdiagonalized. Bloch’s theorem essentially states that we can take eigenstates of H to be also
ˆeigenstates of Ta.

ˆTo see what this means let’s look more carefully at Ta. We have seen this in 8.05 already:

p
â = exp

(
iaˆ

T
~

)
= exp

(
a
∂

∂x

)
. (58)
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ˆOur boundary conditions ensure that p̂ is Hermitian, and thus Ta is unitary. Therefore its eigenval-
ues are of the form eiα for α ∈ R. By convention we write the eigenvalues as eika for some k ∈ R.
The resulting eigenstates ψn,k(x) thus satisfy

T̂aψ
ik

n,k(x) = ψn,k(x+ a) = e aψn,k(x). (59)

ˆHere n is a label for any additional degeneracy in the eigenstates of H.
We can also write ψn,k(x) = eikxun,k(x) with un,k(x) = un,k(x + a). This form of Bloch’s

theorem is more conventionally used.
The probability density |ψn,k(x)|2 = |un,k(x)|2 is periodic but delocalized. In that sense in

resembles plane waves, and implies that the electrons are generally free to move around, despite
the presence of the ionic potential.

Range of k values? By definition if we add an integer multiple of 2π to k then the phase eika

is the same. So we can WLOG restrict k to the “Brillouin zone” −π < k π
a ≤ .a

Meaning of k. The value k is referred to as a “crystal momentum,” and even though it is
only defined modulo 2π/a, it has some momentum-like properties. To see this, first look at the
eigenvalue equation satisfied by un,k.

p2 2(p+ ~k)
(En,k − V (x))eikxun,k(x) = eikxun,k(x) = eikx un,k(x). (60)

2m 2m

Rearranging we have (
(p+ ~k)2

+ V un,k = En,k un,k . (61)︸ 2m

)
| 〉 | 〉

H

︷︷
k

By the Hellmann-Feynman theorem,

︸
1 dEn,k dH

= 〈un,k| k |un,k〉 (62)
~ dk dk

p+ ~k
= 〈un,k|

m
|un,k〉 (63)

p p
=

〈 〉〈ψn,k| ψn,k〉 =
m
| . (64)

m

If we interpret this last quantity as the velocity and define ωn,k = En,k/~, then we find that the
dω

velocity is equal to n,k . This is the usual expression for the group velocity of a wave.dk
The 3-d case. We will not explore this in detail here, but here is a very rough treatment.

~
If we have a cubic lattice with spacing a then we can write ψ ~ (~x) = eik·~xun,k(~x) for un,k(~x) =

n,k

un,k(~x+ aei) for i = 1, 2, 3. The resulting Brillouin zone is defined by ki ∈ [−π , π ].a a
More generally suppose we have a lattice that is periodic under translation by ~a1,~a2,~a3. The

theory of crystallographic groups includes a classification of possible values of ~a1,~a2,~a3. The “re-
~ ~ ~ciprocal lattice vectors” b1, b2, b3 are defined by the relations

~ai ·~bj = δi,j . (65)

This is equivalent to the matrix equation   ~a1
~a2



~a3

  · ~ ~ ~b1 b2 b3
 = I3. (66)
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~ ~ ~ ~Similar arguments imply that k lives in a space that is periodic modulo translations by b1, b2, b3.
For more details, see a solid-state physics class, like 8.231, or a textbook like Solid State Physics
by Ashcroft and Mermin.

The tight-binding model. On your pset you will consider some more general models, but for
now let us consider a simple model that can be exactly solved. In the tight-binding model the
potential consists of deep wells, each containing a single bound state with energy E0. Let |n〉
denote the state of an electron trapped at x = na for n = . . . ,−2,−1, 0, 1, 2, . . .. Suppose there is
also a small tunneling term between adjacent sites, so that the Hamiltonian is

∞

H =
∑

E0|n〉〈n| −∆|n+ 1〉〈n| −∆|n 1
n=

− 〉〈n|.
−∞

This can be rewritten in terms of the translation operator T =
∑

n |n+ 1〉n as

H = E0I −∆(T + T †). (67)

By Bloch’s theorem the eigenstates can be labeled by k, with

T |ψk〉 = eika|ψk〉 (68)

H|ψk〉 = Ek|ψk〉 (69)

From (67) we can calculate

Ek = E0 −∆(eika + e−ika) = E0 − 2∆ cos(ka). (70)

If ∆ = 0 then we have an infinite number of states with degenerate energy equal to E0. But when
∆ 6= 0 this broadens into a finite energy band E0 ± 2∆ (see plot).

k
-πa -πa

Ek

E0

E0 − 2∆

E0 + 2∆

Real solids are not infinite. Suppose there are N sites with periodic boundary conditions,
i.e. let L = Na and suppose that ψ(0) = ψ(L). This implies that Tn|ψ〉 = ψ and therefore for any
eigenvalue eika we must have

eikaN = 1 (71)

Nka = 2πn for some integer n (72)

2πn
k =

Na L 2 2

The energy levels are along the same band as before but now the allowed values of k are integer
multiples of 2π .L
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k
−π
a

π
a

Ek

spacing 2π
L

E0

E0 − 2∆

E0 + 2∆

individual
energy
levels

Each one of these points corresponds to a delocalized state.

Band structure. Now suppose each site can support multiple bound states, say with energies
E0 < E1 < E2. Then tunneling opens up a band around each energy. If ∆ is small enough then
there will be a band gap between these.

Kronig-Penney model Another model that can be exactly solved is a periodic array of delta
functions. We skip this because Griffiths has a good treatment in section 5.3.2.

Free electron. We now turn to a rather trivial example of a periodic potential, namely V = 0.
This is periodic for any choice of a. Still it is instructive to apply Bloch’s theorem, which implies
that eigenstates can be written in the form

ψn,k(x) = eikxun,k(x), (74)

where −π
a < k ≤ π

a and un,k(x) = un,k(x + a). One such choice of un,k(x) is e
2πinx
a . Plugging this

into (74) we obtain

ψn,k(x) = ei(
2π
a
n+k)x and En,k =

~2

2m

(
2π

.
a

)2

n+ k (75)

This corresponds to a separation of scales into high and low frequency; the index n describes the
rapid oscillations that occur within a unit cell of size a and the crystal momentum k describes the
long-wavelength behavior that can only be seen by looking across many different cells.

If we did not use Bloch’s theorem at all then the allowed energies would simply look like the
parabola E = p2/2m . Dividing momentum into k and n leads to a folded parabola; see Fig. 3.

Nearly-free electrons. Now suppose that V is nonzero but very weak. If [Ta, V ] = 0 then V
will be block diagonal when written in the eigenbasis of Ta. Recall that the eigenvalues of Ta are
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-πa -πa
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n = 0

n = 1n = −1

n = 2n = −2

Figure 3: Band diagram for free electrons.

eika for k and integer multiple of 2π . If we let φ := 2πa/L then there is a basis in which we haveL 1
T =



. . .

1

eiφ

. . .

eiφ

e2iφ

. . .



and V =



∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

∗




. .




.


These blocks correspond to single values of k which are vertical lines in Fig. 3. Treat V as a
perturbation. For a typical value of k the kinetic energy of these points is well-separated and so
V does not significantly mix the free states. However, near ±π/a, the kinetic energy term has a
degeneracy, so there the addition of V will lead to a splitting, which will open up a gap between
the bands (see figure drawn in class).

Conductors, semiconductors and insulators. A band with N sites can hold 2N electrons,
once we take spin into account. Suppose that there are M delocalized electrons in this band. If
M < 2N then the band is partly filled. This means that it is possible for an electron at the edge of
the filled region (see blackboard figure) to gain a small amount of momentum, perhaps in response
to an applied electric field. In this situation we have a conductor. For example, in sodium there is
1 free electron per atom, so the band is half full. A crystal can also be a conductor if bands overlap
(something more likely in three dimensions) resulting in multiple partially full bands.

Alternatively, suppose M = 2N , so the band is completely full. If there is a large band gap
then there is no way for an electron to absorb a small amount of energy and accelerate. In this
case the material is an insulator.

If the band gap is small then the material is a semiconductor. Call the band below the gap the
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“valence band” and the band right above the gap the “conduction band.” At T = 0 the valence
band is completely full and the conduction band is completely empty, but for T > 0 there are a few
excited electrons in the conduction band and a few holes in the valence band. These are mobile
and can carry current. The holes behave like particles with positive charge and negative mass.

The Fermi surface can also be pushed up or down by “doping” with impurities that either
contribute or accept electrons. Adding a “donor” like phosphorus to silicon adds localized electrons
right below the conduction band. A small electric field is enough to move this into the conduction
band. The resulting material is called an “n-type semiconductor.” On the other hand, aluminum
has one few electron than silicon, and so is an “acceptor.” Adding aluminum will increase the
number of holes in the valence band and reduce the number of conduction electrons, resulting
in a “p-type semiconductor.” An interface between n-type and p-type semiconductors is called a
p-n junction, and is used for diodes (including LEDs), solar cells, transistors and other electronic
devices.

3 Charged particles in a magnetic field

3.1 The Pauli Hamiltonian

Consider a particle with charge q and massm. We will study its interactions with an electromagnetic
~ ~ ~field. To write down the Hamiltonian we will use not E and B but instead the vector potential A

and the scalar potential φ. Recall that their relation is

1~ ~B = ∇× ~ ~ ~A and E = −∇φ−
c

∂A
. (76)

∂t

We have seen this already for the electric field, where the contribution to the Hamiltonian is qφ(~x).
¨ ~ ˙

The force from the magnetic field is velocity dependent (recall the classical EOM m~x = q(E+ ~x ~
c×B)

˙with ~v = ~x), so its contribution to the Hamiltonian cannot be as a potential term.
To derive the correct quantum Hamiltonian we can start with the classical Hamiltonian and

follow the prescription of canonical quantization
or we can start with the

Dirac equation and consider the nonrelativistic limit. Another option is to add a term q ˙

~
~x

A to the Lagrangian. Either way the magnetic field turns out to enter the Hamiltonian
c ·
by

replacing the kinetic energy term with 1
2m(~p− q ~A(~x))2. We thus obtain the Pauli Hamiltonianc

(neglecting an additional spin term):

1
H =

2m

(
~p− q 2

~A(~x) + qφ(~x). (77)
c

There are a few subtle features of (77). First, it contains

)
a massive redundancy in that we are free

~to choose an arbitrary gauge for A and φ without changing the physics. Specifically if we replace
~A, φ with

1~A′ ~ ~= A+∇f and φ′ = φ−
c

∂f
, (78)

∂t

then all observable quantities will remain the same. This gauge-invariance will be explored more
~ ~on your pset. For now observe that plugging (78) into (76) leaves E,B unchanged.

Also observe there are now two things we might call momentum: the original p~ and the term
≡ qappearing in the Hamiltonian m~v p~− ~A(~x). The operator p~ still satisfies [pi, xj ] =c −i~δij and is

called the generalized mometum. By contrast, m~v is called the kinetic momentum. We will see on
the pset that expectation values of one of these is gauge-invariant; this one can thus be physically
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observed. (Sometimes an observable is said to be gauge invariant; this generally means not that
the operator is gauge invariant but that its expectation values are. More concretely if O′ is the
transformed version of O then we say O is gauge invariant if 〈ψ′|O′|ψ′〉 = 〈ψ|O|ψ〉.)

Remark: This gauge freedom will appear many times in the coming lectures and often leads
to seemingly strange results. It is worth remembering that we are already used to a simpler form of

t
gauge invariance: that of replacingH(t) withH(t)+f(t)I, and |ψ(t)〉 with exp(−i f(t′)dt′/~)|ψ(t)t0

〉.
This change clearly describes the same physics and we have (often implicitly) restricted our attention
to gauge-invariant observables. Specifically, we recognize that energies are arbitrary

∫
(here “non-

gauge-invariant”) while differences in energies are physically observable (i.e. “gauge-invariant”).
This also points to the difficulties in formulating an analogue of the Schrödinger equation in
which there are no redundant degrees of freedom, such as the overall phase. If we tried to
express Hamiltonians in terms of energy differences rather than energy levels then the differen-
tial equation would involve terms that were sums of many of these differences (e.g. E4 − E1 =
(E4 − E3) + (E3 − E2) + (E2 − E1)), thus taking on a “non-local” character analogous to what

~ ~ ~would happen if we tried to express (77) in terms of E,B instead of A, φ.
As a sanity check on (77) we will show that it reproduces the right classical equations of motion.

Recall that Hamilton’s equations of motions are

∂H
ẋi =

∂pi
and ṗi = −∂H .

∂xi

First we calculate

∂H
ẋi =

∂pi
=

1

m

(
pi −

q

c
Ai

)
=⇒ ~p = m~̇x+

q ~A, (79)
c

~obtaining a generalized momentum p~. Next we should remember that A(~x), φ(~x) depend on position
so that

∂H
ṗi = −

∂xi
= −

∑
j

q

mc

(
pj −

q

c
Aj

) ∂Aj
∂xi
− q ∂φ

∂xi
= −

∑
j

q

c
ẋj
∂Aj
∂xi
− q ∂φ (80)

∂xi

To evaluate the LHS, we apply d/dt to (79) and obtain

d
ṗi =

dt

(
mẋi +

q

c
Ai

)
= mẍi +

q

c

∂Ai
∂t

+
∑
j

∂Ai
ẋj

∂xj


. (81)

Combining this with (80) and rearranging we obtain



mẍi = q

(
∂φ−
∂xi
− 1

c

∂Ai
∂t

)
+
q

c

∑
j

ẋj

(
∂Aj
∂xi
− ∂Ai

.
∂xj

) (82)

To simplify the last term, observe that, for fixed i, j,

∂Aj
∂xi
− ∂Ai ∇~=
∂xj

∑
εijk( × ~A)k =

k

∑
εijkBk

k

and thus ∑
ẋj

j

(
∂Aj
∂xi
− ∂Ai
∂xj

)
=
∑
j,k

εijkẋjBk = (~̇x× ~B)i.
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We can now rewrite (82) in vector notation as

¨m~x = q

 1−∇~ φ− c
~̇A︸ ︷︷ ︸

~E

+
q ˙ ~~x
c
×B. (83)

This recovers the familiar Lorentz force law. Phew!

3.2 Landau levels

For the rest of this section we consider particles with charge q and mass m confined to the x-y
~ ~plane with E = 0 and B = Bẑ = (0, 0, B).

The classical equations of motion are

q¨m~x =
c
~̇x× ~Bẍ

ÿ

 =
qB ẏ

mc


−ẋ


This corresponds to circular motion in the x-y plane with frequency ωL ≡ qB , called the Larmormc
frequency. Circular motion is periodic and we might expect the quantum system to behave in part
like a harmonic oscillator.

To solve the quantum case we need to choose a gauge. Here we face the sometimes conflicting
priorities of making symmetries manifest and simplifying our calculations. We will choose the
“Landau gauge” to make things simple, namely

~A = (−By, 0, 0), φ = 0. (84)

~Another variant of the Landau gauge is A = (0, Bx, 0). On the pset you will also explore the
~“symmetric gauge,” defined to be A = (−1

2By,
1Bx, 0). It is nontrivial to show that these result2

in the same physics, but this too will be partially explored on the pset.
In the Landau gauge we have

1
H =

2m

(
px +

qB

c
y

)2

+
1
p2

2m y. (85)

(We might also add a p2
z/2m term if we do not assume the particles are confined in the x-y plane.

This degree of freedom is in any case independent of the others and can be ignored.)
To diagonalize (85) the trick is to realize that [H, px] = 0. Thus all eigenstates of H are also

eigenstates of px. Let us restrict to the hkx eigenspace of px. Denote this restriction by Hkx . Then

p2
y

Hkx =
2m

+
1

2m

(
hkx +

qB

c
y

)2

=
p2
y

2m
+

1

2
m

(
qB

mc

)2(
y − −~kxc

2

qB

)
. (86)

This is just a harmonic oscillator! The frequency is

qB
ω ≡

mc
= ωL,
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(i.e. the Larmor frequency) and the center of the oscillations is offset from the origin by

y0
−~k≡ xc

=
qB

−l20kx.

In the last

i.e. l0 =
√ step we have defined l0 to be characteristic length scale of the harmonic oscillator,

~
mωL

=
√

~c .qB

We can now diagonalize H from (85). The eigenstates are labeled by kx and ny, and have
energies and wavefunctions given by

Ekx,ny = ~ωL(ny + 1/2) (87)

/
ψ ikxx 1 4 y y0
kx,ny = e l0

−
φny

(
−

,
l0

)
(88)

where φn(y) is the nth eigenstate of the standard harmonic oscillator. As a reminder,

(
φn(y) =

−1)n√
2nn!π1/4

e
y2

2
dn 2

e
dyn

−y .

We refer to the different ny as “Landau levels.” The lowest Landau level (LL) has ny = 0, the
next lowest has ny = 1, etc. States within a LL are indexed by kx. Since this can take on an infinite
number of values (any real number), the LLs are infinitely degenerate.

These basis states look rather different from the small circular orbits that we observe classically.
They are completely delocalized in the x direction, while in the y direction they oscillate over a
band of size O(l0) centered around a position depending on kx. Of course we could’ve chosen a
different gauge and obtained eigenstates that are delocalized in the y direction and localized in
the x direction. And on the pset you will see that the symmetric gauge yields something closer to
the classical circular orbits. The reason these alternate pictures can be all simultaneously valid is
the enormous degeneracy of the Landau levels. Changing from one set of eigenstates to another
corresponds to a change of basis.

3.3 The de Haas-van Alphen effect

To make the above picture more realistic, let’s suppose our particle is confined to a finite region
in the plane, say with dimensions L×W . For simplicity we impose periodic boundary conditions.
This means that

2π
kx = nx, nx ∈ Z.

W

We also have the constraint that y0 should stay within the sample. (Assume that l0 � L,W so we
can ignore boundary effects.) Then 0 < y0 < L, or equivalently

WLqB− < n
2π~ x < 0.

c

This implies that each LL has a finite degeneracy

qB
D ≡WL

hc
=

A

2πl20
=

BA

hc/q
=

Φ
. (89)

Φ0

Here A = WL is the area of the sample, Φ = BA is the flux through it and Φ0 = hc/e is the
fundamental flux quanta (specializing here to electrons so q = −e).
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Let us now examine the induced magnetization. In general the induced magnetic moment µ~I is
given by −∇~ ~

~E. We can classify this response based on the sign of µ~I ·B. If it is positive we sayB
the material is paramagnetic and if it is negative we say it is diamagnetic. (Ferromagnetism can be
thought of as a variant of paramagnetism in which there can be a nonzero dipole moment even with
zero applied field. This “memory effect” is known as hysteresis and comes from an enhanced spin-
spin interaction known as the exchange interaction; cf. pset 8.) The standard examples of para- and
diamagnetism are spin and orbital angular momentum respectively. At finite temperature spins
will prefer to align with an applied magnetic field, thus enhancing it, while induced current loops
(e.g. orbital angular momentum) will oppose an applied field.

What is the induced magnetic moment for an electron in the nth LL? The energy is

~eB
E = ~ωL(n+ 1/2) =

2mec
(2n+ 1) ≡ µBB(2n+ 1) µB =

e~
.

2mec

Thus the induced dipole moment is

∂E
µI = − = +

∂
−(2n 1)µB.

B

The minus sign means diamagnetism, corresponding to the fact that the circular orbits caused by
a magnetic field will oppose that field. (We neglect here the contributions from spin.) The 2n+ 1
reflects the fact that higher LLs correspond to larger oscillations.

So it looks like the quantum effects do not change the basic diamagnetism predicted by Maxwell’s
equations, right? Not so fast! That was for one electron. Now let’s look at N electrons. The
magnetism of a material is the induced magnetic moment per unit area, i.e.

1 ∂E≡ − tot
M .

A ∂B

To calculate this we need to combine the total energy as a function of B. This is nontrivial
because the degeneracy of each LL grows with B. Thus as B increases each electron in a given LL
gains energy, but each LL can hold more electrons, so in the ground state some electrons will move
to a lower LL. The competition between these two effects will give rise to the de Haas-van Alphen
effect. Below is a sketch of what this looks like.

E = 0

low field high field

Let ν = N/D be the number of filled LLs. Recall that D = BA/Φ0. (Neglect spin in part
because the B field splits the two spin states.) Since B is the experimentally accessible parameter
with the easiest knob to turn (as opposed to N ,A), we can rewrite ν as

B0 NΦ
ν = B0

B
≡ 0

.
A
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Figure 4: Ground-state energy E as a function of filling fraction, according to (90).

The number of fully filled LLs is j ≡ bνc, meaning the largest integer ≤ ν. Thus j ≤ ν < j + 1.
The energy of the ground state is then

j−1

E =
∑

D~ωL(n+ 1/2) + ︸(N − jD)~
partially

︷︷ωL(j + 1/2)
n=0

filled level

filled levels

︸
~ j
ωL

−1
1 j

= N

︸ ︷︷ ︸(∑
(2n+ 1) +

(
1−

)
(2j + 1)

)
.

2 ν ν
n=0

Using ~ωL/2 = µBB = µBB0/ν and
∑j−1

n=0(2n+ 1) = j2 we obtain(
2j + 1 j(j + 1)

E = NµBB0
ν
−

ν2

)
. (90)

At integer points E/NµBB0 = 1. For ν < 1 this equals 1/ν and for 1 < ν < 2, we have E =NµBB0
3 − 2

2 . In general there are oscillations at every integer value of ν. This is plotted in Fig. 4.ν ν
These oscillations mean that the magnetism M will oscillate between positive and negative. We

calculate
1 ∂E

M = − = −nµB
(

1
(2j + 1)− 2j(j + 1)

)
. (91)

A ∂B ν

This is illustrated in Fig. 5. The key features are the oscillations between extrema of M = ±nµB
with discontinuities at integer values of ν. Also observe that for ν < 1 all electrons are in a
single LL, so we observe the simple classical prediction of diamagnetism, which we refer to here as
“Landau diamagnetism” even though it is the only part of this diagram where the Landau levels
do not really play an important role.
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Figure 5: Magnetism M as a function of filling fraction, according to (91).

3.4 Integer Quantum Hall Effect

The IQHE (integer quantum Hall effect) is a rare example of quantization that can be observed at
a macroscopic level. The Hall conductance (defined below) is found to be integer (or in some cases
fractional) multiples of e2/h to an accuracy of ≈ 10−9. This allows extremely precise measurements
of fundamental constants such as e2/h or (combined with other measurements) α = e2/~c.

The quantum Hall effect also lets us determine the sign of the charge carriers.

The classical Hall effect. This was discovered by Edwin Hall in 1879. Consider a sheet of
conducting materialin the x-y plane with a constant electric field E in the y-direction.

y

x L - + E

W

As discussed above, if the mean time between scattering events if τ0 then there is a drift velocity
q ~ ~ nq2τ ~ 2

~vd = τ0E giving rise to a current density j = nq~vd = 0E. Thus the conductivity is σ0 = nq τ0 .m m m
We can also define the resistivity ρ0 = 1/σ0.
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Now let’s apply a magnetic field B in the ẑ direction. This causes the velocity-dependent force

~v~F = qE + q
c
× ~B. (92)

This equation assumes that v � c, which we will see later is implied by the assumption E � B.
To see that this assumption is reasonable, note that in units where ~ = 1, c = 1 an electric field of
1V/cm is equal to 2.4 · 10−4eV2 while a magnetic field of 1 gauss is equal to 6.9 · 10−2eV2.

If the velocity is the one induced by the electric field then the magnetic field causes a drift in
the positive x̂ direction, regardless of the sign of q. This means that the charge current does depend
on the sign of q, which gave an early method of showing that the charge carriers in a conductor are
negatively charged.

L

W

y

x - + E⊙
B

In general the x̂ velocity will build up until it cancels out the ŷ component of the velocity, and
the velocity will oscillate between the x and y components. These oscillations will be centered
around the value for which the RHS of (92) is zero, namely E

B
We will argue more rigorously below that there should be a net drift in the x̂ direction. Plugging

~ ~E = Eŷ,B = Bẑ into (92) we obtain

qB
mv̇x = vy (93a)

c
qB

mv̇y = qE − vx (93b)
c

Using ωL = qB/mc we can rewrite this in matrix form as

d

vx    0 1 vx

    0
= ωL +

dt vy −1 0 v qE
y m


. (94)

In general if A is an invertible matrix and we have a differential equation


of the form

d ~~v = A~v + b = A(~v +A−1~b)
dt

then we can rearrange as
d ~(~v +A−1~b) = A(~v +A−1b).
dt

This has solution
~ ~~v(t) +A−1b = eAt(~v(0) +A−1b),
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Figure 6: Motion of a charged particle subject to crossed electric and magnetic fields.

which we can rewrite as
~v(t) = eAt︸ (~v(0) +A−1~b)︷︷ ︸

oscillation

−A−1~b︸ ︷︷ ︸
drift

. (95)

In our case 
)

A


1

= ω  0 1 cos(ωLt) sin(ωLt 0 0
, eAt  ~

L =
0


, A−1 = ωL , b = (96)

−1 − qEsin(ωLt) cos(ωLt)

 
1 0

 
m


−

We conclude that ~v is a sum of an oscillatory term (whic


h averages to


zero) and


a drift


term


equal

to
Ec

vH x̂ ≡ x.ˆ
B

Here vH = E c is the Hall velocity. (We see now why the v � c and E � B assumptions areB
related.)

A third and slicker derivation is as follows. Let us change to a reference frame that is moving
~ ~at velocity ~v = vH x̂. (Suppose for now that we do not know vH .) To leading order in v/c the E,B

fields transform as

v v~ ′ ~ × ~ H
E = E + B = (E

c
− B)ŷ (97a)

c
v v~B′ ~ ~ H

= B − × E = (B
c

− E)ẑ (97b)
c

~To obtain E′ = 0 we should choose v E
H = c. This means that in the xB

′, y′ frame we have pure
circular motion, and therefore in the original x, y frame we have circular motion superimposed on
a drift with velocity vH x̂.

The resulting motion is depicted in Fig. 6.
This reasoning predicts a current in the x̂ direction known as the Hall current. The current

density in the x̂ direction is

E
jx = (e− density)(e−

y
charge)(velocity) = nq c

B
≡ σHEy,

where σH = nqc/B is the Hall conductivity.
More generally we should think of conductivity as a matrix σ with ~j = σE. Thus jx = σHEy

but there may also be longitudinal conductivity which would yield a current jy = σLEy. Since there
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Figure 7: The dashed line is the classical prediction for the transverse resistance. We see instead
that it rises quickly around integer values of ν but is nearly flat (in fact, flat to within a factor of
10−9) in between. The longitudinal resistance (and also conductivity) is mostly zero but jumps to
something nonzero around the integer values of ν.

is no drift in the y direction we have σL = 0. (In fact this conductivity is exponentially small.) We
can also show that jy = −σHEx. We then conclude thatjx 0

=
jy

   σH

−σH 0


︸ ︷︷



σ

Ex
Ey

 .

(This matrix perspective is also useful when computing

︸
resistivity which is ρ = σ−1.)

While the formula we have found is entirely classical, we can interpret in terms of various
quantities from quantum mechanics. Recall that the filling fraction ν = B0 = nhc = nec h σH

B eB B e2
= .σ0

Here we have used that σ0 = e2/h is the fundamental unit of conductivity. We thus predict that

σH = νσ0.

However, we find that the true picture is somewhat different.

The quantum Hall effect. We now examine this problem using quantum mechanics. The
Hamiltonian is

1 q 2
H = p~

2m
− ~A + qφ. (98)
c

~ ~ ~Corresponding to our fields B = Bẑ and E =

(
Eŷ we

)
can choose A = −Byx̂ and φ = −Ey. We

also neglect motion in the ẑ direction. This yields

2 21 q
p

2m

(
By

= x −
c

)
py

H +
2m
− qEy. (99)

30



As with the dHvA effect we note that [H, px] = 0 and we restrict ourselves to the subspace of
wavefunctions of the form eikxxf(y). Using ωL = qB/mc and l0 =

√
~/mωL =

√
~c/qB, we then

obtain

H|kx =
p2
y

2m
+

1
mω2

2 L(y − y0)2 − qEy y0 ≡ −`20kx

(100)

p2
y

=
2m

+
1

2
mω2

L

(
y2 − 2yy0 + y2

0 −
2qE

mω2
L

y

)
(101)

=
p2
y 1

+
2m 2

mω2
L (y − y0 − y1)2 − 1

2
mω2

L(2y0y1 + y2
1) y1 ≡

qE

mω2
L

=
qE

mωL
qB
mc

=
E
B c

ωL
=
vH
ωL

(102)

This looks again like a shifted harmonic oscillator, now centered at Y ≡ y0 + y1. There is also an
additional energy shift, which can be simplified a bit. The first term −mω2

Ly
2

0y
2

1 = −mωLl0k
vH

x =ωL
~mω 1 2

L k 2 2 1
xvH = ~kxvH . The second term mωLy1 = mvH is simply the kinetic energy corre-mωL 2 2

sponding to the Hall velocity, albeit with a negative sign.
We conclude that the energies are

1
Ekx,ny = ~ωL

(
1

ny +

)
+ ~vHk 2

x
2

− mv
2 H . (103)

This first term labels the Landau levels and the last is simply an overall constant. The middle
term, though, breaks the degeneracy in kx. Thus the energy levels are no longer degenerate. We
can think of the Landau levels as being “tilted” as follows.

~E = 0 ~E 6= 0

Note that earlier we broke the symmetry between x and y somewhat arbitrarily, and using a
different gauge would’ve resulted in wavefunctions that were plane waves in the y direction, or even

~localized states. This freedom was due to the extensive degeneracy of the Hamiltonian when E = 0.
Now that the degeneracy is broken we can really say that the energy eigenstates are plane waves
in the x direction. There is a semi-classical explanation for this. Different values of y correspond
to different value of the electric potential. Classically a particle in a potential experiencing a
magnetic field will follow equipotential lines (i.e. contours resulting from making a contour plot
of the potential). The quantum eigenstates are then superpositions corresponding to these orbits.
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This picture can be useful when considering the situation with disorder. In this case the potential
looks like a random landscape with many hills and valleys. Most orbits will be localized but (it
turns out that) there will be one orbit going around the edges that wraps around the entire sample.
We will, however, not discuss this more in 8.06.

We can rewrite (103) in a more intuitive way in terms of the center of mass Y = y0 + y1. A
short calculation shows that

1
Ekx,ny = ~ωL

(
ny +

2

)
− qEY +

1
mv2

2 H . (104)

Here we see the energy from the LL, the energy from a particle with center of mass Y in an electric
field and the kinetic energy corresponding to the Hall velocity.

We can also rewrite Y in a more intuitive way. Write Y = y0 + y1 = − cpx
qB + vH

ωL
and substitute

px = mvx +
q

c
(−By) = mvx −

qB
y

c

to obtain
v

Y = y − x − vH
,

ωL

which is precisely the classical result we would expect from a particle undergoing oscillations with
frequency ωL on top of a drift with velocity vH .

We can now calculate the group velocity vg = ∂ω of the eigenstates of H. From (103) we∂k
immediately obtain vg = vH , suggesting that each eigenstates moves with average velocity vH .

Another way to measure the Hall current is to compute the probability current. On your pset
~you will show that this is S = Reψ∗~vψ, where ~v = 1

m(~p− q ~A). The charge current is then ~ ~j = qS.c
Finally the wavefunction is

eikx
ψ(x, y) = √ φny(y − y0 − y1), (105)

W

where φn is the nth eigenstate of the harmonic oscillator. For the average current density in the
sample we average over a vertical strip to obtain ~javg = 1 L

L

∫
~jdy.0

As a sanity check we first evaluate

~
Sy = Reψ∗

im

∂
ψ = 0, (106)

∂y

since φn(y − Y ) is real. On the other hand

Sx = Reψ∗
(

~
im

∂

∂x
+
qBy

mc

)
ψ (107a)

=
1 ~
φ

W
| n(y − y0 − y1)|2

(
kx
m

+ ωLy

)
(107b)

=
1 |φn(y − y0 − y1)|2ωL(y
W

− y0) (107c)

To evaluate this last quantity observe that |φ (y− y − y )|2n 0 1 is an even function of y− y0− y1 and

32



so we can write ∫ L ωL
Sxdy =

0

L

W

∫
0
|φn(y − y0 − y1)|2(y − y0) (108a)

ω≈ L
∞

W

∫
0
|φn(y − y0 − y1)|2(y − y0) (108b)

ωL
=
W

∫ ∞
0
|φn(y − y0 − y1)|2︸ ︷︷ ︸

even

(y − y0 − y1︸ ︷︷ +

odd

︸ y1) (108c)

ωL
= y1 (108d)
W

We conclude that ~javg = q ωLLW y1 = q vHA = q
A
E
B c. Thus the Hall conductivity is

σH 0 0
Ey AB Φ e h Φ Φ

This is the same as the classical result!
To see the quantized conductivity we will need some additional arguments. While some of these

are beyond the scope of 8.06, we will sketch some of these arguments briefly here.
One argument that we can already make involves impurities/disorder. Thanks to impurities

and disorder, many states are localized. We can think of the electron spectrum as containing not
only Landau levels which are delocalized and can carry current but also many localized states which
do not conduct. As we lower the B field the Landau levels move down and reduce their degeneracy.
This has the same effect as raising the Fermi energy (see the wikipedia page on “Quantum Hall
effect” for a nice animation). Sometimes the Fermi energy is between Landau levels and all we are
doing is populating localized states, but when it sweeps through a LL then we rapidly fill a LL and
the conductivity jumps up.

This explains the plateaus in the conductivity but not why the conductivity should be an integer
multiple of σ0. We will return to this point later after discussing the Aharonov-Bohm effect.

3.5 Aharonov-Bohm Effect

To write down the Hamiltonian for a charged particle in electric and/or magnetic fields we seem to
~need the vector and scalar potentials A, φ. But do these really have physical meaning? After all,

they are only defined up to the gauge transform

~A′ ~ ~= A+∇f (110a)

1 ∂f
φ′ = φ− . (110b)

c ∂t

~ ~On the other hand, E and B are gauge-invariant. Are these all we need? Can we build any other
~ ~gauge-invariant quantity from the E and B fields?

~One attempt to construct a gauge-invariant quantity from the scalar potential A is to consider
performing a line integral. Fix some path with endpoints ~x1 and ~x2 and define the line integral

P ≡
∫

~A
path

· ~dl. (111)

If we perform the transform in (110a) then we replace P with

P ′ ∇~= P +

∫
f

path
· ~dl = P + f(~x2)− f(~x1). (112)
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(a) (b)

Figure 8: (a) An infinite solenoid of radius R intersects a plane. (b) A cross-section of that plane.
The magnetic field inside the solenoid is Bẑ. An electron and the curve C are entirely outside the
solenoid.

This is gauge invariant iff ~x1 = ~x2. In this case the path becomes a loop and∮
~ · ~ Stokes’ thm

∫
∇~ ~P = A dl = (

loop surface
×A) · d~a =

∫
~B

surface
· d~a = Φ. (113)

In the last step we have defined Φ to be the magnetic flux through the surface. The last two
quantities are manifestly gauge invariant. However, they are not local! In particular, P depends

~on A along the loop but the enclosed magnetic field might be in a very distant region.
This is the fundamental tradeoff that we get with gauge theories. If we write our Hamiltonian

~in terms of gauge-covariant quantities like A, φ then we have enormous redundancy thanks to the
gauge freedom. But if we try to describe our physics in terms of gauge-invariant quantities like
~ ~E,B then we give up locality, which is much worse.

The Aharonov-Bohm thought experiment. In 1959 Aharonov and Bohm proposed the fol-
~ ~lowing thought experiment in which an electron always stays within a region with B = 0 but A 6= 0

and this nonzero vector potential has an observable effect. (In fact, an equivalent experiment was
proposed by Ehrenberg and Siday in 1949, and was arguably implicit in Dirac’s 1931 arguments
about magnetic monopoles.)

The idea is to have current running through solenoid going from z = −∞ to z =∞. The field
inside the solenoid is Bẑ and the field outside the solenoid is 0. (If the solenoid is finite the field
outside would be small but nonzero.) An electron is confined to the z = 0 plane and always remains

~outside the solenoid. In particular it only moves through a region where B = 0.
However, the vector potential cannot be zero outside the solenoid. Indeed consider a curve C

~enclosing the solenoid such as the dashed line in Fig. 8(b). The loop integral of A around C is∮
~ · ~A d` = πR2B = Φ

C
6= 0. (114)

The two-slit experiment. First we recall the two-slit experiment first introduced in 8.04. A
~2 2

source S emits mass-m particles with energy E = k . They pass through a screen with two slits2m
(labeled A and B) which are separated by a distance a before hitting a screen a distance L away.
Suppose their position on the screen is y. (Let’s just consider one dimension.) There are two paths:
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one from S to A to y and one from S to B to y. Denote their lengths by LA and LB. If L � a
then a little trig will show that

ay
LB − La ≈

L
. (115)

The wavefunction at the screen will be the sum of the contributions from both paths. We write
this somewhat informally as

ψ(y) = ψ(S → A→ y) + ψ(S → B → y). (116)

Since a particle traveling a distance d picks up a phase of eikd, we find that

ψ(y) ∝ eiLAk + eiLBk. (117)

The probability of finding the particle at position y is then

( k|ψ(y |2 ∝ cos2

(
LB − LA)

)
2

)
= cos2

(
kay

2L

)
. (118)
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The two-slit experiment with non-zero vector potential. Suppose now that our particle
has charge q. Suppose further that the two paths of the two-slit experiment go around an infinite
solenoid, so that the particle experiences a nonzero vector potential but zero magnetic field.

~We will need a prescription for solving the Schrödinger equation in a region where B = 0 but
~A may be nonzero. To do so, let us fix a point ~x0, which in our scenario will be the location of the
source S. Then given a curve C from ~x0 to ~x, define

q
g(~x,C) ≡ ~

~c

∫
A

~x0→~x
· ~d`. (119)

along C

We claim that under some conditions g(~x,C) is independent of C and can be expressed as a function
only of ~x. In other words

g(~x,C) = g(~x). (120)

These conditions are that we restrict our curves C and our points ~x to a simply-connected
~region of space in which B = 0 everywhere. Here “simply connected” means that there is a path

between any two points and any loop can be continuously contracted to a point. We will see in a
minute where this requirement is used.
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Figure 9: Two curves from ~x0 to ~x and the region enclosed by them.

To prove (120), consider two curves C1, C2 with the same endpoint. Then

q
g(~x,C1)− g(~x,C2) =

~c

∫
~x0→~x

along C1

~A · d~̀− q

~c

∫
~x0→~x

along C2

~A · d~̀ (121a)

=
q q~
~c

∫
A

~x0→~x
· ~d`+

along C1
~c

∫
~x→~x0

along C2

~A · d~̀ (121b)

=
q ~
~c

∮
A

~x0→~x→~x0
· ~d` (121c)

along C1 then C2

q
= Φ (121d)

~c
In this last equation, Φ is the flux enclosed by the loop made up of C1 and C2; see Fig. 9.

Next we can use the function g(~x) to construct the solution of the Schrödinger equation in a
~simply connected region with B = 0.

Claim 1. Let ψ(0)(~x, t) be a solution of the free Hamiltonian H(0) = p2/2m and suppose that
ψ(0) ~ q(~x, t) has support entirely in a simply connected region where B = 0. Let H = (p − ~A)2/2mc
and let ψ(~x, t) be the solution of the Schrödinger equation Hψ = i~∂tψ.

ψ(~x, t) = eig(~x)ψ(0)(~x, t). (122)

Note that the claim relies implicitly on the fact that we can write g solely as a function of ~x.

~Proof. Recall that for any f(~x) we have [p,~ f ] = −i~∇f . Then

[p,~ eig(~x)] = −i~∇~ eig(~x) (123a)

= ~ ~eig(~x)∇g (123b)

= ~eig(~x) q

~c
~A(~x) (123c)

=
q ~Aeig(~x) (123d)
c

This means that when p~− q ~A “commutes past” eig it turns into simply p~. In other wordsc ( q
p~− ~A

c

)
eig = eigp.~ (124)

This implies that

Heig
1

=
q

p~
2m

(
−
c
~A
)
eig = eig

~p2

2m
= eigH(0). (125)
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Figure 10: A two-slit experiment is conducted with a solenoid between the two paths. We define
two simply connected regions A and B, both of which include the source and the screen where we
observe interference. Region A contains paths S → A→ y and region B contains paths S → B → y.

Thus we have (using also the fact that ∂tg = 0) that

Hψ = Heigψ(0) = eigH(0)ψ(0) = eigi~∂tψ(0) = i~∂teigψ(0) = i~∂tψ. (126)

We can now use Claim 1 to analyze the two-slit experiment in the presence of a magnetic field.
Suppose that we add a solenoid in between the two paths, as depicted in Fig. 10. Then we can
define regions A and B which (a) are both simply connected, (b) both contain the source S and
the target y (for all values of y) and (c) region A contains point A and region B contains point B.
This will allow us to use (122) separately in each region.

Let gA and gB denote the functions g restricted to regions A and B respectively, and let
ψ(0)(S → A→ y) and ψ(0)(S → B → y) be the solutions of the free Schrödinger equation in those
regions. This means that

q
gA(y) =

~c

∫
S→A→y

~A · d~̀ and gB(y) =
q ~A
~

∫
~

c S→B→y
· d`. (127)

Then from (122) we have

ψ(S → A→ y) = exp(igA(y))ψ(0)(S → A→ y) (128a)

ψ(S → B → y) = exp(igB(y))ψ(0)(S → B → y) (128b)

Again the total amplitude will have an interference term which is now shifted by gA − gB. Indeed

2 1|ψ(y)|2 ∝
∣∣∣eiLAkeigA + eiLBkeigB

∣∣∣ = cos2

(
2

(
kay

L
+ (gA − gB)

))
. (129)
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This new phase shift is

q
gA(y)− gB(y) =

~c

∮
S→A→y→B→S

~Aḋ~̀=
q

Φ, (130)
~c

where Φ = πR2B is the enclosed flux. If q = − qe then ~c = −2πΦ0 and the phase shift is −2π Φ .Φ0

The resulting interference pattern is then

|ψ(y)|2 ∝= cos2

(
1

2

(
kay

L
− 2π

Φ

Φ0

))
. (131)

Figure 11: Observed interference pattern when performing the two-slit experiment with a magnetic
flux Φ enclosed between the two paths.

The resulting interference pattern is depicted in Fig. 11. Observe that the experiment is only
sensitive to the fractional part of Φ/Φ0. In that sense we find again a periodic dependence on the
magnetic field.

On pset 10 you will explore a related phenomenon, this time for the energy levels of a time-
independent Hamiltonian. A particle confined to a ring with a magnetic flux through the ring will
have its energy eigenstates shifted by an amount that again depends only on the fractional part
of Φ/Φ0. (This problem in turn is related to problem 2 on pset 5 which was a time-independent
version of the Berry phase.)

In both cases, if Φ is an integer value of Φ0 then this cannot be distinguished from there being no
magnetic field. This is related to a deep property of electromagnetism, which is rather far beyond
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~the scope of 8.06. While we have presented A and φ as real numbers, they can also be thought
of as elements of the Lie algebra u(1) which generates the Lie group U(1). Electromagnetism is
known as U(1) gauge theory for this reason. Non-abelian gauge theories are also possible. Indeed
the Standard Model is a U(1)×SU(2)×SU(3) gauge theory, with the U(1) part corresponding to
electomagnetism, the SU(2) part to the W and Z bosons in the weak force and the SU(3) part to
gluons in the strong force.

3.5.1 The IQHE revisited

Finally we review an argument by Laughlin and Halperin for explaining charge quantization in the
IQHE.

First we need to review a concept known as the Thouless charge pump. Suppose we have a
1-d system containing some number of electrons. As 0 ≤ t ≤ T suppose we adiabatically change
the Hamiltonian from H(0) to H(T ), and suppose further that H(T ) = H(0). In other words we
return to the Hamiltonian that we start with. Then the net flux of electrons from one end of the
system to the other will be an integer. This is because, other than the endpoints, the state of the
system should remain the same. We will see below how this applies to the IQHE.

In Section 3.4 we considered electrons on a sheet. Instead we will use an annulus geometry as
depicted in Fig. 12.

Φ(t)

⊙
B

~E

C

r

Figure 12: Hall effect on an annulus. There is still a B field in the ẑ direction, but now the electric
ˆfield points in the φ direction. We can think of it as being induced by a time-dependent flux in the

center of the annulus. The Hall current now flows radially outward and can be measured by the
amount of charge flowing across the contour C.

Suppose that the Hall conductivity is σH = xσ0 for some unknown x. We would like to show
that x is an integer.

ˆTo induce an electric field in the φ direction we will apply a time-dependent flux in the center
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of the annulus. If this flux is Φ then the vector potential at radius r is

Φ~A = φ̂. (132)
2πr

The electric field is then
1~E = −
c

∂A

∂t
= − 1

2πrc

∂Φ
φ̂. (133)

∂t

The Hall current is then
σ~ H

jH = σE =
2πrc

∂Φ
r̂. (134)

∂t

Now suppose we adiabatically increase Φ from 0 to Φ0. By the results of the pset, the final
Hamiltonian is the same as the initial Hamiltonian (up to a physically unobservable gauge trans-
form), and by the Thouless charge pump argument, this means that an integer number of electrons
must have flowed from the inner loop to the outer loop. (Note this integer could be zero or negative.)

Let ∆Q be the amount of charge transferred in this way. Then

∆Q =

∫ T dQ

0 dt
dt =

∫ T

0
2πrjHdt = 2πr

σH
2πrc

Φ0 =
x e

2

h

c

hc
= xe. (135)

e

We conclude that x is an integer, as desired.
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