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Often we can’t solve the Schrödinger equation exactly. This is in fact almost always the case.
For example, consider the van der Waals force between two Hydrogen atoms. What happens then?
Do we give up?

Of course not! We use approximate methods. The guiding philosophy is

• Reduce real system to toy model that can be exactly solved.

• “Solve” actual Schrödinger equation in some (hopefully controlled) approximation.

Our strategy will depend on how our real system is close to our toy system. If the difference is small
(meaning not very much energy) we use perturbation theory. If we are dealing with a Hamiltonian
changing slowly in time we use the adiabatic approximation and for a Hamiltonian varying slowly
in space we use WKB. We can also consider perturbations that are localized in space, which leads
to the framework of scattering.
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1 Time-independent perturbation theory

1.1 Non-degenerate case

1.1.1 Setup

Suppose
H = H0 + δH,

where H0 has a known eigenspectrum

H0|n0〉 = E0
n|n0〉 n = 0, 1, 2, . . . ,

and δH is a “small” perturbation. We can make this precise by saying that ‖δH‖ = O(λ), and λ is
a small dimensionless number (say around 0.01). (Here the norm of a Hermitian matrix is defined
to be the largest absolute value of its eigenvalues.) Some examples are:

• Relativistic effects: λ ∼ v/c.

• spin-orbit coupling: λ ∼ α ≈ 1/137.

• weak E or B field

We will solve for |n〉 and En order by order in λ; i.e.

|n〉 = |n0〉+ |δn〉 = |n0〉 + |n1〉 + |n2〉 + . . .

O(λ0) O(λ1) O(λ2)

E 0
n = En + δEn =

︸︷︷︸
0

︸︷︷︸
1

︸︷︷︸
2

O

︸︷︷︸En + En + En + . . .

(λ0) O

︸︷︷︸
(λ1) O

︸︷︷︸
(λ2)

The definition of |nk〉 is theO(λk
k

) piece of |n〉. Formally |nk〉 = k! ∂
∂λk
|n〉|λ=0 and Ekn = k! ∂

k
E

∂λk n|λ=0.
While we know the energies and eigenstates of H0, we may not know so much about δH. However,
we will need to assume that at least we know its matrix elements in the unperturbed eigenbasis.
Denote these by

δHmn ≡ 〈m0|δH|n0〉.

Today we will consider the non-degenerate case; i.e. when E0
m 6= E0

n for m 6= n. Next time we
will consider the degenerate case. Your antennae should be going up at this: the difference between
E0
m 6= E0

n and E0 0
m = En can be arbitrarily small, so how can they really lead to different physical

theories? In fact, we will see that for non-degenerate perturbation theory to make sense, the energy
levels need to be not only different, but also far enough apart, in a sense that we will make precise
later.

Difference from Griffiths We will work in a basis where 〈n0|δn〉 = 0. Equivalently 〈n0|nk〉 = 0
for all k > 0. Since |n0〉 is normalized, this means that

〈n|n〉 = 〈n0|n0〉+ 〈δn|δn〉 = 1 + 〈δn|δn〉 ≥ 1.

Of course |n〉 is still a valid eigenvector even it is not a unit vector. But if we want a unit vector,
we will need to take

|n norm =
|n0〉+ |δn〉〉 √
1 + 〈δn|δn〉

.
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This convention is used in Sakurai.
As a result of this convention

〈n0

0

|n〉 = 1 (1)

〈m |n〉 = 〈m0|δn〉 for m 6= n (2)

1.1.2 Perturbative solutions

We want to solve the eigenvalue equation

H|n〉 = En|n〉. (3)

Instead of expanding every term, we will make choices that will be justified in hindsight:

(H0 + δH)|n〉 = En(|n0〉+ |δn〉) (4)

Thus we avoid for now expanding |n〉 on the LHS and En on the RHS. Now left-multiply (4) by
〈n0| and use 〈n0|H0 = 〈n0|E0

n and 〈n0|n〉 = 1 to obtain

〈n0|δH|n〉 = En − E0
n. (5)

What if we instead left-multiply by 〈m0| for some m 6= n? Then we obtain (using 〈m0|n0〉 = 0)

〈m0|δH|n〉 = (En − E0
m)〈m0|δn〉. (6)

So far everything is still exact, but further progress will require approximation. We now solve (5)
and (6) order by order in λ.

Replacing the |n〉 in (5) with |n0〉+O(λ) we obtain

En = E0
n + 〈n0|δH|n0〉+O(λ2) . (7)

This is the first-order energy shift. It will soon become an old friend.
Performing the same substitution in a rearranged version of (6) yields

〈m0|δn〉 =
〈m0|δH|n〉
En − E0

m

=
〈m0|δH|n0〉+O(λ2)

(8)
E0
n − E0

m +O(λ)

Repeating for all values of m 6= n (recall that 〈n0|δn〉 = 0 by fiat) we obtain∑ 〈m0| )|δn〉 = |m0 δH|n0〉〉
m6=n

+O(λ2) (9)
E0
n − E0

m

This yields the first-order shift in the wavefunction. We need to be a little careful here. Clearly
we are using the non-degenerate condition here by assuming that E0

n −E0
m 6= 0 for n 6= m. But we

have actually used a robust version of this assumption
On to second order!

En = E0
n + 〈n0 δH
0

| |n〉 exact (10a)

= E 0 0 0
n + 〈n |δH|n 〉+ 〈n |δH|δn〉 still exact (10b)

0

= E0
n + δHnn + 〈n0 m δH n +O(λ2)|δH |

m

∑ | 〉|m0 〈〉
=6 n

En − E0
m

using (9) (10c)

= E0
n + δHnn +

∑
m6=n

|δHmn|2
+O(λ3) (10d)

E0
n − E0

m
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We will generally not need the second-order shift in the wavefunction, but it can be computed to
be

|k0〉δH δH
| k ,n
n2〉 =

k

∑
n

∑
,l l

6= l 6=n
(E0

n − E0
k)(E0

n − E0
l )
−
∑
k 6=n

|k0〉δHn,nδHk,n
. (11)

(E0
n − E0)2

k

For higher-order corrections, Sakurai is the best reference. For 8.06, we will never go beyond second
order in energy or first order in wavefunction, although below we will see that (11) is relevant to
degenerate perturbation theory.

To summarize, we have
E0
n = E0

n

E1
n = δHnn

2

E2
n =

m

∑ |δHmn|

6=n
E0
n − E0

m

|n0〉 = |n0〉

|n1 m0 δH n0

〉 =
|

m

∑
m0 〈 | 〉| 〉

6=n
E0
n − E0

m

What about normalization? We should multiply by (1 + 〈δn|δn〉)−1/2 = 1 − 1 O2〈n
1|n1〉 + (λ4) so

this affects only |n2〉 and not |n1〉.

1.1.3 Energy shifts of the ground state

The first-order energy shift can of course be either positive or negative; e.g. suppose δH = ±λI.
But there is one thing we can always say about it: it always overstates the true ground-state energy
of the perturbed system. Here is the proof. The first-order estimate of the ground-state energy is

E0
0 + E1

0 = 〈00|H0|00〉+ 〈00|δH|00〉 = 〈00|H|00〉 ≥ 〈0|H|0〉 = E0.

The second equality is from the identity H = H0+δH and the inequality is the variational principle:
〈ψ|H|ψ〉 ≥ 〈0|H|0〉 for all unit vectors |ψ〉.

In this case, we would hope that the second-order term E2
0 would improve things by being

negative. And this is indeed the case.

E2
0 =

m

∑ |δH 2
m0|

=06
.

E0
0 − E0

m

Every term in the sum is ≤ 0 so we always have E2
0 ≤ 0.

More generally at 2nd order we observe “level repulsion.” The n’th energy level is pushed up
by levels with m < n and pushed down by levels with m > n (assuming that E0 < E1 < . . .).

1.1.4 Range of validity and a two-state example

As we go to higher orders of perturbation theory, we multiply by entries of δH (e.g. δHmn) and
divide by differences of eigenvalues of H0, e.g. E0

n −E0
m. So the perturbation has to be small w.r.t

the level spacing. See diagram on blackboard plotting E(λ) as a function of λ.
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Here’s probably the simplest possible example.

H =

E0
0 λ

 
0

λ E0
1

   0 0
= E0

0 E0
1

H0

+ λ

λ 0

δH

 .

Let’s write E0, E0 ¯ ¯
0 1 = E ±∆ so that H0 = E +

︸
∆σz

︷︷
. The

︸
first-order

︸ ︷︷ ︸
shifts are δH00 = δH11 = 0.

The second-order shifts are
|δH |2 2

01
E2 λ

0 = =
E0

0 − E0
1

−
2∆

|δH |2 2
01

E2 λ
1 = =

E0
1 − E0

0 2∆

Of course this problem can be solved directly more easily, as you will explore on your pset. There
you will find that the energy levels are (exactly)

¯E ,E = E ±
√
λ2 + ∆2

0 1

In the |∆| � |λ| limit this can be written as

Ē ±∆

√
1 +

( 2λ

∆

)
,

while in the |λ| � |∆| limit we can write this√as ( )2∆
Ē ± λ 1 + .

λ

The splitting in energy levels is 2∆ for λ = 0 and then has a O(λ2) term for small λ and finally
becomes approximately linear in λ for large λ. This type of behavior is called an “avoided crossing”
because of the fact that generically Hamiltonians tend to have non-degenerate eigenvalues. See
figure drawn in lecture.

1.1.5 Anharmonic oscillator

p2 mω2x2

H = + + λx4 . (12)
2m 2

δH
H0

How does the ground-state energy change?

︸
The

︷︷
unp

︸
erturb

︸︷︷︸
ed ground-state energy is E0

0 = 1
2~ω.

~Using x̂ =
√

(a+ a2mω
†) we can calculate (√ )4

E1 ~
0 = λ〈0| (a+ a†)

2mω
|0〉

~2

= λ
∣∣∣ 2
(a+ a

2
†)2

4m2ω
|0〉

~2 2

∣
= λ

∣∣∣(a+ a

∣
4m2 2

†)|1
ω

〉

∣
~2

∣
= λ

∣
4m2ω2

∣
3 ~2

= λ

∣∣ 〉
4

∣ √
2|2〉

∣∣2|0 +

m2ω2

∣
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Here is an alternate derivation using integrals. This one is hairier, so let’s set ~ = m = ω = 1.
We will use 〈x|0〉 2

= Ne−x /2, for some normalization N . Then we can compute

∞
dxe x4

E1
−x2

0 = λ〈0|x4|0〉 = λ

∫
−∞∫

2 .∞
dxe−x−∞

Here our job becomes easier if we introduce a parameter.∫
ax2

√
π

dx e− =
a

d

da

∫
dx e−ax

2
=

∫
1
√
π

dx (− )e−
2

x2 ax = −∫ 2 a3/

d2 ∫ 2

−ax2 4 −ax2 1

da

(
3
√
π

dx e = dxx e =
2

−
2

)(
−

2

)
a5/2

Thus 〈x4〉 = 3/4.
Moral of the story: Gaussian integrals involve some beautiful tricks that you should learn. But

raising and lowering operators are easier.

1.2 Degenerate perturbation theory

1.2.1 Overview

The first-order corrections to the wavefunction and the second-order corrections to the energy all
have factors of E0

n − E0
m in the denominator. So when two energy levels become equal, these give

nonsense answers. But in fact, even the first-order energy shift will be wrong in this case. Let us
revisit the case of two-level systems. Suppose that E0

0 = E1
1 . For simplicity, assume E0 1

0 = E1 = 0
so the overall Hamiltonian is

H = δH =

 

The eigenvalues are λ, which is first order in δH

0 λ
.

λ 0


± . But the diagonal elements of δH are zero, so

(7) would say that the first-order energy shifts are zero. To summarize, the first-order energy shift
is wrong, and the second-order energy shift and first-order wavefunction shift are infinite. The
situation looks grim.

There is one point in the above paragraph where I pulled a fast one. The reference to “diagonal
elements” refers to the eigenbasis of H0. In the above example, this is labeled |00〉 and |10〉,
which we took to be | ↑〉 and | ↓〉 respectively. But since H0 has degenerate eigenvalues, the
corresponding eigenvectors are not unique. We can make a unitary change of basis within the
degenerate eigenspace and obtain new eigenvectors. In that example, we could take

|00〉 =
| ↑〉 − | ↓〉√ and 10 =

| ↑〉+ | ↓〉
2

| 〉 √
2

so that the matrix for δH would be diagonal in the {|00〉, |10〉} basis. In this case the first-order
energy shift is exactly correct and the second-order energy shift is zero.
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General rule for degeneracy in H0. For a general Hamiltonian where H0 has degenerate
eigenvalues, the strategy is:

1. Choose an eigenbasis {|n0〉} for H where δH = 0 for each m = n with E0 = E0
0 mn m n. This is

called a “good basis.”

2. Apply non-degenerate perturbation theory to handle the remaining off-diagonal terms in δH
(which now will only be nonzero when E0

m = E0
n).

Why is this possible? By the spectral theorem, we can write H0 as

H0 =
∑

E0
i Πi, (13)

i

where Πi is a projection operator supported on the space of E0
i -eigenvectors. Call this space Vi.

We will think of H0 as block diagonal with blocks corresponding to the subspaces V1, V2, . . ..
We can write δH =

∑
i,j ΠiδHΠj . The diagonal blocks are the components of the form ΠiδHΠi.

These are the blocks we would like to diagonalize. Since each ΠiδHΠi is a Hermitian matrix we
can write

dimVi

Πi δH Πi =
∑

∆i,a

a=1

|i, a〉〈i, a| (14)

where ∆i,a are the eigenvalues of ΠiδHΠi (when considered an operator on Vi) and {|i, a〉}a=1,...,dimVi

forms an orthonormal basis for Vi. Since each |i, a〉 ∈ Vi, we also have H0|i, a〉 = E0
i |i, a〉. Now

the first-order energy shifts are given by the ∆i,a and the second-order energy shifts and first-order
wavefunction corrections involve off-diagonal elements of δH between eigenvectors of H0 with dif-
ferent eigenvalues. If this fully breaks the degeneracy of H0, then we can follow the lines of the
non-degenerate case. We first introduce a little more notation: let n stand for the pair (i, a), denote
|n〉rotated = |i, a〉 and let δHrotated denote δH in the {|n〉rotated} basis.

δHrotated 2

En = E0 δHrotated
n + nn +

m:E

∑ | mn

E0

|
+O(λ3) (15)

0 n E0
m

m=E0
n

−

The above equations work in many cases, including all the examples on problems sets or exams
that you will encounter. However, it may be that the diagonal elements of δH do not fully break
the degeneracy. In this case, higher-order corrections may encounter new degeneracies which may
require new changes of basis1. In the next section we will describe systematically what to do in
this case.

1Here is an example. Take λ� ∆ and let

H =

 
0 0 λ

0 0 λ

λ λ ∆

 .

7
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Graphically, H0 might look something like
0 E1

H0 =

 0

 E1

 E0
2

 E0
2

 (16)

 E0
2

E0


3


We can write δH in this basis and generically


it could have every matrix


element nonzero, e.g. ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗


δH =

 ∗ ∗ ∗ ∗ ∗ ∗


 (17)
∗ ∗ ∗ ∗ ∗ ∗


 ∗ ∗ ∗ ∗ ∗ ∗


∗ ∗ ∗ ∗ ∗ ∗


By choosing a new basis for each block, H


0 stays the same and δH takes on the form ∗ 0 ∗ ∗ ∗ ∗

δHrotated =

 0 ∗ ∗ ∗ ∗ ∗


   ∗ ∗ ∗ 0 0 ∗

∗ ∗ 0 ∗ 0




(18)
∗

 ∗ ∗ 0 0 ∗ ∗


∗ ∗ ∗ ∗ ∗ ∗


There are still off-diagonal terms but only between different eigen


values of H0.

Why is it reasonable to ask that we find a new basis in this way? After all, the whole point
of perturbation theory was that it was too hard to diagonalize H0 + δH. However, now we only
need to diagonalize δH in each block of degenerate eigenvalues. Typically these will be much lower
dimension than the overall space.

1.2.2 First-order wavefunction correction - degenerate case

Note: This section is included for completeness, but contains material that goes beyond lecture and
will not appear on any problem sets or exams.

What about the perturbed wavefunction |n〉? The zeroth order wavefunction should be |n0〉rotated.
It is tempting to state that the first-order correction to |n〉 = |i, a〉 is

j rotated
1 ?

∑ dimV

0 rotated δH
rotated δH

|n 〉 = |m 〉 mn j
= j,

0
0 m

〉rotated

E0 − E
∑ ∑

| b,ia
b (19)

0 n E0 0
i E

m:E =E j=i b=1n

− j
m

8
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?
but this is only part of the story (the = is a warning that this equation is not quite correct). (19)
does indeed describe the contribution to |i, a〉 from states |j, a0〉rotated with i = j, but there are
also contributions within the same block, i.e. from states with j = i. This can be thought of as
representing the need to further rotate our rotated basis to account for degeneracies that arise at
higher order in perturbation theory.

Another way to think about that is that if we go to second order in perturbation theory, we get
the contribution (following (11)):

|n2〉 ?
= |i, a2〉 ?

=
∑ ∑ |j, b〉rotatedδHrot δHrot

jb,kc kc,ia |j, b〉rotatedδHrot
ia,iaδH

rot
jb,ia

(Eia − E − E 2
jb)(Eia − Ekc)

−
∑

(Eia jb)
(j,b)=(i,a) (k,c)=(i,a) (j,b)=(i,a)

(20)
Is this really a second-order (i.e. O(λ2)) correction? First look at the second term. Because we
have rotated into a block-diagonal basis δHjb,ia is zero unless i = j. Thus the denominator is O(1)
and the numerator is O(λ2), and the second term gives a O(λ2) correction. What about the first
term? Now the block-diagonal constraint means that only the i = k = j terms survive, and again
the numerator is O(λ2). However, it is legal to have i = j (as long as a = b. In this case, the energy

2
splitting between i, a and i, b is O(λ). Thus, this term contributes O(λ ) = O(λ). In other words,λ
it is a first-order contribution, despite appearing in the expansions of the second-order term. (For
similar reasons, (20) gives only part of the true second-order contribution, for which we need to go
to third order.) We conclude that the true first-order correction to the wavefunction is

∑ dim∑Vj dimV
δHrotated

i, a1 = +0

∑ ∑j b
j, b rotated jb,ia

0

∑ |i,
rot

〉rotatedδHrot

| 〉 | 〉 ib,jcδH
rot
jc,ia

(21)
E E 0
i − 0 0

j (δHia − δH )(Eib i − Ej )
j=i b=1 b=a j=i c=1

1.2.3 Hydrogen preview

An important application of degenerate perturbation theory is to the spectrum of hydrogen. Here

p2 e2

H0 =
2me

− .
r

The eigenbasis can be taken to be |n, l,m,ms〉 where n is the principle quantum number, l denote
total orbital angular momentum, m its z-component and ms the z-component of the electron
spin. Another valid basis is |n, l, j,mj〉 where j denotes the total overall angular momentum (i.e.

~corresponding to the operator J2 ~ ~ ~where J = L+ S) and mj its z component.
In both cases, the eigenvalues of H0 depend only on n and all the other degrees of freedom are

degenerate. Indeed
m

E0 1
nlmms = − ee

4 13.6eV

n2 2~2
≈ − .

n2

Next week we will discuss a number of corrections to this that are smaller by factors of either
α = e2 ≈ 1 2

(the fine structure constant) or me
~c mp

≈ 1 . (Indeed even mee
137 1800 ~2 can be written as

mec
2α2, where mec

2 is the energy scale from the energy from the rest mass of the electron. And
this of course is smaller by a factor of roughly me than the mass of the entire atom. We ignoremp
these larger energies in what follows because they are not relevant to experiments in which the
electron or proton are not created or destroyed.) The contributions to the energy of hydrogen are
summarized as follows.

We mention here also the “spectroscopic notation” convention, which is used for the coupled
basis. The state |n, l, j,mj〉 is written as nLj where “L” is a letter that expresses the orbital angular
momentum according to the rule:

9
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what where discussed magnitude

0th order 8.04/8.05 E0
n ∼ mee4

~2 ∼ mec
2α2

fine structure 8.05 Efs ∼ mec
2α4

Lamb shift QFT E 2
Lamb ∼ mec α

5

hyperfine structure 8.05 Ehf ∼ mec
2α4me

mp
2

proton radius pset ∼ m c2α3
(
me

e mp

~Zeeman effect Griffiths depends on B field

)

~Stark effect pset depends on E field

Table 1: Contributions to the hydrogen energy levels.

L = S P D F G . . .

l = 0 1 2 3 4 . . .

Some examples are

nLj n l j

1S1/2 1 0 1/2

2S1/2 2 0 1/2

2P1/2 2 1 1/2

2P3/2 2 1 3/2

1.2.4 Two-spin example

Let’s see how these ideas work with a simple example. Consider two spin-1/2 particles with Hamil-
tonian

E0 E~H0 = S1 · ~ 0
S2 = (Sx ⊗ Sx + Sy ⊗ Sy + S

~2 ~ z2
⊗ Sz).

~ ~ ~ ~ ~ ~ ~ ~To diagonalize this, define J = S 2
1 + S and observe that J2

2 = S + S2
1 2 + 2S1 · S2. Thus

~E J2 S2 ~
0 − ~S2

1 − ~
2

(
J2 3

H0 = = E
~ 02 2 2~2

−
4

)
.

~The eigenvalues of J2 are 0 (degeneracy 1) and 2~2 (degeneracy 3); these correspond to total spin
0 and 1 respectively. Thus spectrum of H0 is −3E0 (with degeneracy 1) and 1E0 (with degeneracy4 4
3).
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Case 1 Now suppose we add a perturbation

∆ ∆
δH = (S

~ z,1 + Sz,2) = J
~ z.

(This might arise from applying a magnetic field in the ẑ direction.) We need to choose a good basis.
Fortunately, δH and H0 commute and the coupled basis |j,m〉 (with j = 0, 1 and −j ≤ m ≤ j)
works. In this basis we have

j(j + 1) 3
H0|j,m〉 = E0

(
−

)
|j,m

2 4
〉

δH|j,m〉 = ∆m|j,m〉

[Draw energy level diagram of this.]
This was too easy! When everything commutes, this is what it looks like. Of course, we

could have chosen a more foolish eigenbasis of H0. Any eigenbasis would to include the singlet
|0, 0〉 = |+〉⊗|−〉−|−〉⊗|+〉√ , but it could be completed with any additional three orthonormal states

2

in the triple space. If we chose these to be anything other than |1, 1〉, |1, 0〉, |1,−1〉, then even
first-order perturbation theory would give the wrong answer. (Working this out is an exercise left
to the reader.)

Case 2 Let us try a slightly more interesting perturbation.

∆
δH = (S

~ z,1 − Sz,2).

This could arise from applying a magnetic field to positronium. We calculate its matrix elements
in the coupled basis as follows:

δH|1, 1〉 = δH|+〉 ⊗ |+〉 = 0

δH|1,−1〉 = δH|−〉 ⊗ |−〉 = 0

+ + + + +
δH|1, 0 = δH

| 〉 ⊗ |−〉 |−〉 ⊗ | 〉
= ∆
| 〉 ⊗ |−〉 − |−〉 ⊗ | 〉〉 √

2
√ = ∆ 0, 0

2
| 〉

Since δH is Hermitian we know also that δH|0, 0〉 = ∆|1, 0〉.
Thus, in the coupled basis we have

 1, 1 1, 0 1,−1 0, 0  1, 1 1, 0 1,

, 1 E0

−1 0, 0

1 0 0 04 1, 1 0 0 0 0
1, 0 0 E0 0 0 1, 0 0 0 0 ∆

H0 = 4

1

 δ
,−1 0

 and H =
0 E0 0 1,−1


0 0 0 0


4

0, 0 0 0 0 −3E0 0, 0
4


0 ∆ 0 0


(22)

First-order perturbation theory (correctly) gives us zero energy shift to first order in ∆. The
second-order shifts are

|δH
E2 (1,0),(0,0)

(1,0) =
|2 ∆2

=
E0 E0 E0(1,0) − (0,0)

E2 ,
,0) =

|δH 2
(0 0),(1,0) ∆2

(0 = ,
E0 E0

|

(0,0) − (1 0)
−E0,

where we have used the fact that E0 = E0
j=1 − E0

j=0.
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2 The Hydrogen spectrum

See Section 1.2.3 for an overview.

2.1 Fine structure

The term “fine structure” refers to three different contributions to the energy that are O(mec
2α4),

compared with the O(mec
2α2) zeroth order contribution: relativistic corrections, spin-orbit cou-

pling and the Darwin term. The contributions all arise from the Dirac equation for a particle with
charge q and mass m:

q
HDirac = cα~ · (p~− ~A) + βmc2 + qφ,

c

~where A, φ are the vector and scalar potentials of the EM field, and α~ and β are given by0 ~σ 0
α~ =

  I
= σx ⊗ ~σ and β =

  = σz .
~σ 0 0

⊗ I
−I

The Hilbert space here is the space of well-behaved functions from R3 → C as well as a four-
dimensional discrete space. Why four dimensions? Two are to account for spin, and another two
are to allow a particle to be either an electron or positron. While the Dirac equation was originally
motivated by the need to properly account for the fine structure of hydrogen and to unify quantum
mechanics with special relativity, it as a bonus generated the prediction of antimatter.

We will not further explore the Dirac equation in 8.06, but at this point we should observe
its symmetry under collective rotation. That is, if R is a 3 × 3 rotation matrix and we replace
(σ1, σ2, σ3) with (

∑
iRi1σi,

∑
iRi2σi,

∑
iRi3σi) and (p1, p2, p3) with (

∑
iRi1pi, iRi2pi, iRi3pi)

~(and similarly transform A, φ) , then HDirac is unchanged.
This means that HDirac ~comm

∑
~ ~utes with the collective rotation operators J = L + S,

∑
although

~ ~not necessarily the individual rotations L and S. As a result, a good basis for the Dirac-equation
version of hydrogen is likely to be |n, l, j,mj〉 (since the Hamiltonian should be block-diagonal in
n, j and independent of mj) instead of the alternative |n, l,ml,ms〉. After much calculation we will
see this fact confirmed.

2.1.1 Relativistic correction

Let’s first do some back-of-the-envelope estimates of how important relativity is to the hydrogen
atom. The unperturbed ground-state wavefunction is

e−r/a0 2

ψ100(~r) = √ ~ 1 ~
, a0 = = .

πa3 me2 αmc
0

We can then estimate
~

p ≈ = αmc
a0
p

v ≈ = αc
m

Thus the electron velocity is ≈ 1/137 the speed of light. This is non-relativistic, but still fast
enough that relativistic corrections will be non-negligible. Let’s compute them!

12



KE =
√
m2c4 + p~2c2 mc2

p~2 p~4

−

=
2m

−
8m3c2

usual term δHrel

The first-order contribution to the energy is

︸︷︷︸ ︸ ︷︷ ︸
E1
nlj = 〈n, l, j|δHrel|n, l, j〉 independent of mj

p~4

= 〈n, l, j| − n, l, j
8m3c2

| 〉

= calculation omitted, see textbooks

α4mc2

−
8n4

(
4n

=
l + 1

2

− 3

)
p4 4

One key feature of this calculation is that the answer indeed scales as α4 2 (αmc)mc (since
m3 =

c2 m3c2

mc2
∼

α4 ) which is smaller than E0
n by a factor of α2. Also note that the answer depends on l but

not j. This is not surprising since spin never appeared. But it is inconsistent with the prediction
from the Dirac equation that the energy should depend instead on j. To get there we will need to
consider additional terms.

2.1.2 Spin-orbit coupling

See Lecture 23 of the 2015 8.05 notes (or Griffiths) for more detail. The general formula for the
ergy of a dipole in ~ · ~en a magnetic field is δH = −µ B. For an electron, the dipole moment is

~S e
= − ︸︷︷︸µB e 2 =

~
− ~µ~e g S.
mc

e~
2mc

~Compute the B field from the proton in the res

︸︷︷︸
t frame of the electron, which see the proton orbiting

it. If ~r is the vector pointing from the proton to the electron, then the magnetic field strength is

~~v e~r e ~v
= − × = =

c r3

× ~r e L~B
c r3 mc r3

m +m
(In both cases, the “mass” is technically the reduced mass e p which we can approximate withmemp

m ≈ me.) Putting this together we get a semi-classical estimate of δH:

2

δHsemi-classical e ~= S
m2c2r3

· ~L.

This is close, but not quite, the true answer that can be obtained from the Dirac equation, which
is exactly half the semi-classical estimate.

e2

δ Dirac ~H = S
2m2c2r3

· ~L.

Now we compute the first-order correction to the energies. We will use the facts that

~ ~ ~2 3〈nlj|S · L|nlj〉 =

(
j(j + 1) +

2
− l(l 1)−

4

1 1

)
(23a)

〈nlj| |nlj〉 = (see Griffiths problem 6.35(c)) (23b)
r3 n3l(l + 1)(l + 1)a3

2 0

13



Now we can calculate:

E1 e2 ~S
nlj,SO =

2m2c2

· ~L〈nlj|
r3
|nlj〉

α4mc2 n(j(j + 1) l(l + 1) 3)
=

4

(
− − 4

4n l(l + 1)(l + 1)2

)

While the exact form of this equation is a bit hairy, we can see that its order of magnitude is
∼ α4mc2, which is comparable to the relativistic correction. Also note that now there is a j and l
dependence, because spin is part of the picture as well.

2.1.3 Fine structure

Combining the relativistic and spin-orbit coupling leads to a miraculous cancelation

4

E1 1 1 α mc2 4n
nlj,FS = Enlj,rel + Enlj,SO =

(
3−

)
. (24)

8n4 j + 1
2

This derivation used the fact that j = l ± 1/2 and can be proved to hold separately for each case
j = l+1/2 and j = l−1/2. An additional complication is that the above formulas for the relativistic
and spin-orbit corrections were not quite right when l = 0 (e.g. the spin-orbit coupling should really
be zero then, and p4 is not a Hermitian operator for l = 0); additionally, there is a third correction
of order α4mc2 called the Darwin shift, due to the fact that the electron is delocalized across a
distance given by its Compton wavelength (which is ∼ αa0). However, this term affects only the
l = 0 term and, together with the correct l = 0 versions of the spin-orbit and relativistic couplings,
ends up giving precisely the formula in (24).

To summarize, while the previous calculations had limited validity, (24) is exactly correct for
all values of n and j. It can also be derived directly from the Dirac equation. We reassuringly find
that it depends only on n and j and not on other quantum numbers.

2 2
Draw a diagram showing the n = 2 states of hydrogen. The zeroth order energy is −α mc . The8

4 2 4 2
fine structure then contributes energy −5α mc to the 2S8 1/2 and 2P α mc

1/2 states and energy − to8
the 2P3/2 states. Are the 2S1/2 and 2P1/2 states degenerate? It turns out that the Lamb shift leads
to a further splitting of these two levels, of order α3 ln(1/α)5mc2. The Lamb shift comes from the
interaction of the electron with the electromagnetic field (since even a harmonic oscillator in the
ground state has nonzero expectation value for observables like x̂2) and a precise derivation of the
Lamb shift requires QED.

2.2 Hyperfine splitting

This was covered in 8.05, but I want to review the derivation and briefly justify one point that we
previously did not have the tools for.

The electron and proton are both magnetic dipoles and thus contribute to the Hamiltonian a
term

~δHHF = −µ~e ·Bproton dipole,

~where the B field coming from the dipole moment of the proton is

1 8π~Bproton dipole = (3(µ~p · r̂)r̂ − µ~p) + µ~pδ
(3)(~r). (25)

r3 3
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The first term has the property that 〈ψ|first term|ψ〉 = 0 if |ψ〉 is an l = 0 state (because the
rotational invariance of |ψ〉 means we can replace r̂ir̂j with its average over rotations, which is
1δij). This was discussed in 8.05, but now first-order perturbation theory lets us rigorously justify3
that this means that the first term contributes zero to the energy of l = 0 states at first order in
perturbation theory.

The second term is called the “contact term” because of the presence of the delta function.
Again we can use perturbation theory to obtain that the first-order correction to the wavefunction
|ψspatial〉 ⊗ |ψspin〉 is

E1 8π
HF = −〈ψspatial| ⊗ 〈ψ (3)

spin| µ~e spin
3

· µ~pδ (~r) |ψspatial〉 ⊗ |ψ 〉

g g

( )
e p 2πe2

~ ~= ψspin Se Sp ψspin ψspatial δ
(3)(~r) ψspatial

m m 2
e p 3c

〈 | · | 〉〈 | | 〉

We now should pause to consider good bases. In fact, treating the spatial and spin wavefunctions
as a tensor product was already an assumption that cannot always be justified, since the fine
structure wants a basis where j (involving both spatial and electron-spin degrees of freedom) is
well-defined. However for the n = 1 state of hydrogen, we always have l = 0 and j = 1/2. Thus
|ψspatial〉 = |1, 0, 0〉 and we obtain a factor of 1

3 from the spatiala0
〈ψ |δ(3)(~r)

π
|ψspatial〉 term.

For the electron and nuclear spins, we have so far a degenerate Hamiltonian. Thus we will
~ ~choose a basis for the spin space that diagonalizes the hyperfine splitting. The eigenvalues of Se ·Sp

~2are with degeneracy 3 (the triplet states) and4 −3
4~

2 (the singlet state). Thus we find that the
hyperfine splitting is

∆EHF
1,0,0 = E1

1,0,0,triplet − E1
1,0,0,singlet

2 me
= gegp α4mec

2 = 5.9
3 mp

· 10−6eV

The wavelength λ = hc is 21cm, and radiation at this wavelength plays a central role in radio∆E
astronomy.

2.3 Zeeman effect

We have so far considered internal magnetic fields, but what happens when we apply an external
magnetic field? Then the contribution to energy from the interaction of this field with the electron
orbital angular momentum and spin angular momentum is

~δHZeeman = −
( ︸︷︷︸µ~L + µ~S

− ~
µ L 0
B ~ − ~

2µ S
B ~

)
· Bext

(0, ,B)

µBB
= (L

︸︷︷︸ ︸︷︷︸
~ z + 2Sz)

eB ~e
= (Lz + 2Sz) using µB =

2mc 2mc

~ ~Because L and S are multiplied by different g-factors (1 and ≈ 2 respectively), we do not simply
~end up with something that depends on J . As a result, the states |n, l, j,mj〉 that were good

for the fine structure do not diagonalize δHZeeman. One basis that would diagonalize the Zeeman
Hamiltonian is |n, l,ml,ms〉. However, if we use this, then the fine structure is no longer diagonal!
This is a fundamental problem: δHFS and δHZeeman do not commute, and thus there is no basis
that simultaneously diagonalizes them.
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To solve this problem we will use perturbation theory. But which Hamiltonian is the base
Hamiltonian and which is the perturbation will depend on how strong the magnetic field is.

2.3.1 Strong-field Zeeman

If EZeeman � EFS then we treat H0 + δHZeeman as the base Hamiltonian, use the |n, l,ml,ms〉 basis
and treat δHFS as the perturbation. In this case the energy is

E 0 1
n,l,ml,ms = ︸︷︷︸En +µBB(ml + 2mS) + EFS + . . . (26)

2 2−α mec
22n

~ ~To compute the fine-structure contribution we need to evaluate things like 〈L · S〉 and 〈p4〉 with
respect to the states |n, l,ml,ms〉. We will not fully carry out this calculation. One example is the
spin-orbit coupling which is proportional to

〈~L · ~S〉 = 〈Lx〉〈Sx〉+ 〈Ly〉〈Sy〉+ 〈Lz〉〈Sz〉 = 〈L 2
z〉〈Sz〉 = ~ mlms.

Here we have used the fact that if a state |ψ〉 satisfies Jz|ψ〉 = λ|ψ〉 (for any operators Jx, Jy, Jz
with the appropriate commutation relations for angular momentum) then

JyJz − JzJ J〈ψ|Jx|ψ〉 = 〈ψ| y

i~
|ψ〉 = 〈ψ| yλ− λJy

i~
|ψ〉 = 0

and similarly 〈ψ|Jx|ψ〉 = 0.
After some (omitted) calculations we arrive at{

α4mec2
(( 3

3 − 1 if l = 0
2EFS n 4n

n,l,m s
=

l,m α4m c2e 3 l(l+1)−mlms (27)
otherwise

2n3 4n − l(

)
l+1/2)(l+1)

The field strength needed for this is not unreasonable. Since

)
the fine-structure splitting between

j = 1/2 and j = 3/2 is 5.7 · 10−5eV and µB = 5.8 · 10−5eV/T, we need a field of about one Tesla,
which is large but achievable. This strong-field case is sometimes called the Paschen-Back effect.

2.3.2 Weak-field Zeeman effect

Now we write
H = H︸ 0 +︷︷δHFS︸+δHZee. (28)

HZee
0

As we’ve seen before, the eigenbasis of HZee
0 is |n, l, j,mj〉, so the first-order energy shift when we

add a magnetic field is

Zee µBB
En,l,j,m = 〈n, l, j,mj |Lz + 2Sz|n, l, j,mj ~ j〉

µBB
=

~
〈n, l, j,mj |Jz + Sz|n, l, j,mj〉

µBB
= µBBmj +

~
〈n, l, j,mj |Sz|n, l, j,mj〉
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~How do we evaluate this Sz term? One method is described in Griffiths, and involves an argument
~about the Heisenberg-picture time average of S under the fine-structure Hamiltonian. A more

direct method is to use Clebsch-Gordan coefficients. Indeed

1 l ±m + 1 1 1 l ∓m + 1 1 1|j = l ± ,mj
2

〉 j
= ±

√
2

2l + 1
| j
ml = mj − ,ms = + 2 ml = mj + ,ms =

2 2
〉

√
2l + 1

|
2

−
2
〉

(29)
so if Pr[±] denotes the probability of obtaining outcome ±~/2 when measuring the spin, then we
have

~〈Sz〉 = (Pr[+]
2

− Pr[−])

~ 1 1 1
=

((
l m

2 2l
± j +

1 2

)
−
(
l ∓mj +

+ 2

~m

))
j

= ±
2l + 1

We conclude that

EZee e~B 1
n,l,j,m = mj 1

j 2mec

(
±

2l + 1

)
.

gJ

The term in braces is called the Landé g-factor, after

︸
Alfr

︷︷
ed Land

︸
é, who discovered it in 1921. We

see throughout the spectrum of the hydrogen atom many of the precursors of modern quantum
theory.

3 WKB

3.1 Introduction to WKB

Perturbation theory covers the case when δHmn is small relative to |E0
m − E0

n|. The Wentzel-
Kramers-Brillouin (WKB) approximation covers a different limit, when quantum systems are in
some ways approximately classical. For this reason, it is an example of a semi-classical approxima-
tion. It will result in powers not of δH but of ~, and thus becomes exact in the “classical” limit
~→ 0.

We begin with some exact manipulations of the Schrödinger equation. For a spin-0 mass-m
particle in 3-d, define

ρ(~x, t) = |ψ(~x, t)|2 probability density

~ ~ ~J(~x, t) = Im(ψ∗
m

∇ψ) probability flux

~The flux J has units of probability / area x time and can be seen to be related to momentum as
follows:

~ ~
J(~x, t) = Im

m

1

(
i

ψ∗ pψ~
~

)
= Re (ψ∗pψ~ )
m

Thus, if we integrate over all ~x, we obtain∫
1 p~~ t p~ t

d3xJ =

∫
d3x Re (ψ∗pψ~ ) = Re

〈 〉
=
〈 〉

.
m m m
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One can show (using the Schrödinger equation) the conservation equation

∂ρ ~ ~+ J
∂t

∇ · = 0 . (30)

We can also re-express the wavefunction using ρ as

S(~x,t)

ψ(~x, t) = ρ(~x, t)ei ~ (31)

with S(~x, t) real so that the exponent contributes

√
a pure phase. What does it mean physically? In

terms of ρ, S we can compute

~ ~1 S
ψ

∇ρ∇~ =
2
√ eiS/~ + i

∇
ψ

ρ ~
1 i∗∇~ ∇~ ∇~ψ ψ = ρ+ ρ S︸2
real

︷︷︸ ︸~
imaginary

~ ~

︷︷ ︸
~ ρ∗∇~ ∇~J(~x, t) = Im(ψ ψ) = S

m m ~

Thus we obtain a physical interpretation for the phase.

~
~J(~x, t) = ρ

∇S
. (32)

m

~ ~Namely its gradient relates to the probability flux. If J = ρ“~v” then ∇S ≈ p~. These equivalences
are pretty loose, but we will build on this intuition as we proceed. For now, observe that for a free
particle, they indeed give the right idea:

ip~·~x iEt

ψfree(~x, t) ∼ e− ~ − ~ .

So S = p~ · ∇~~x − ~Et and we have S = p~ exactly. We also have ∇2S = 0, and it will turn out later
that this quantity will measure how “non-plane-wave-like” our wavefunction is.

Schrödinger equation for a general 1-D potential Consider a region where V (x) ≤ E (called
“classically allowed”). Then

~2 d2ψ− = (E
2m dx2

− V (x))ψ(x)

−~2d
2ψ

= ︸2m(E − V (x))ψ(x)
dx2

p2(x)

We can interpret p(x) as a classical momentum. The

︷︷
solution

︸
of this corresponds (roughly) to os-

~cillations with period λ(x) ≡ 2π , which is the De Broglie wavelength corresponding to momentump(x)

p(x).
What if V (x) > E? These are called “classically forbidden.” Then we get

~2d
2ψ

= ︸2m(V (︷︷x)− E)
dx2

κ2(x)

︸ψ(x)
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corresponding to solutions that exponentially decay at rate κ(x).
The claims of “oscillating with period λ(x)” or “decaying at rate κ(x)” are only rigorous when

p(x) or κ(x) are independent of x. But we will see how they can be good approximations even
when p(x) or κ(x) are merely slowly varying with x.

Let’s write ψ(x) = exp(iS(x)/~), for some S with units of angular momentum. Since S can be
complex, this is without loss of generality.

Substituting (in the classically allowed region) we get

iS(x)

p2 d2 iS(x)

(x)e ~2~ = − e ~
dx2

2 d
(
S′(x)−~

iS(x)

= i e ~
dx( ~

2 S′′(x) (S

)
′(x))2

= −~ i
~
−

)

~

)
iS(x

e ~
2

iS(x)

The e ~ terms drop out and we obtain

(S′)2 − i~S′′ = p2(x) (33)

So far this is exact. But if the potential is slowly varying, then p(x) is slowly varying, and the −i~S′′
~term will be small. What does “slowly varying” mean? The wavelength λ(x) = 2π should be smallp(x)

relative to the variation of p(x). In the classical limit ~ → 0 we have λ(x) → 0. Thus it makes
sense to expand around this limit in powers of ~, in a way analogous to our perturbation-theory
strategy of expanding in terms of the perturbation. Thus we write

S(x) = S︸ 0(x) + 2︷︷~S1(x︸) +~ S2(x) + . . .

WKB approximation

and will take only the first two terms to be the WKB approximation.
Let us now substitute S(x) = S0(x) + ~S1(x) into (33). We obtain

(S0
′ + ~S1

′ )2 − i~S0
′′ − i~2S1

′′ = p2(x)

(S′ )2 + 2~S′S′ − i~S′′ + ~2((S′ )2 − iS 2
0 0 1 0 1 1

′′) = p (x)

We want to equate powers of ~ . Treat ~ here as a former parameter, and we obtain

(S0
′ )2 = p2(x) at O(~0) (34a)

2S0
′S1
′ − iS0

′′ = 0 at O(~1) (34b)

From (34a), we obtain S0
′ = ±p(x), which we can solve to obtain

S0(x) = ±
∫ x

p(x′)dx′,
x0

where x0 is arbitrary. Substituting S0
′ = ±p(x), S0

′′ = ±p′(x) into (34b) we find

i p′(x) i d
S1
′ = = ln p(x).

2 p(x) 2 dx
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This has solution
i

S1(x) = ln p(x) + C (35)
2

Substituting into our equation for ψ(x) we get

1
ψ(x) = iS(x)/~ ≈

i i x
~e e (S + S~ 0 1) = exp

(
±

∫
p(x′)dx′

~ x

)
exp

0

(
− ln p(x) + C

2

)
Thus in the classically allowed regions we have the solution

A x

ψ(x) =

∫√ exp

(
i B i x

p(x′)dx′
)

+ √ exp p(x′)dx′ (36)
p(x) ~ x0 p(x)

(
−
~

∫
x0

)

with p(x) =
√

2m(V − E(x)). The solution in the classically forbidden regions is the same but
with p(x) = iκ(x). This corresponds to

C 1 x D 1 x

ψ(x) = √ exp
κ(x)

(
~

∫
κ(x′)dx′ + exp κ(x′)dx′ (37)

x0

) √
κ(x)

(
−
~

∫
x0

)

3.2 Validity of WKB

x
Let’s just look at the first part of the classically allowed solution: ψ(x) = √A exp

(
i p(x′)dxx0

′ .
p(x) ~

The probability density ρ(x) = )

)
|ψ(x |

2
2 = |A| = |A|2 , where v(x) can be thought of as a classicalp(x) mv(x)

∫
velocity. This makes sense because it says that the particle spends less time in regions where it is
moving faster.

~Another check is to look at the probability current: J = Im ψ atem
∗ ∂ ψ . We calcul∂x

1 p′(x) i

( )
ψ′ = − ψ + p(x)ψ

2 p(x) ~
1 p′(x) p(x)

ψ∗ψ′ = −
2 p x)

|ψ
(

|2 + i
~
|ψ|2

~ p(x) p(x)
J = ρ = ρ = ρv(x).

m ~ m

Next, let’s look at the first discarded term. Our approximation assumed that |~2(S1
′ )2| �

|~S0
′S1
′ |, or equivalently, |~S1

′ | � |S0
′ |. In terms of p(x) this condition states that∣∣∣ p′∣~ p

∣∣∣ p′ ~∣� |p| ⇐⇒ 1�
∣∣
~
p2

∣
=

∣
∂x
p

∣
In other words, the de Broglie wavelength should

∣∣
b

∣∣∣∣∣∣
e slowly

∣∣∣ = |∂xλ(x)|. (38)

∣∣ ∣∣ varying. How slowly? Return to

� ∣~ p′1
p2 ∣. Rearranging, we obtain

~ dp|p| � |p′ (
p
| = λ x)

| |

∣∣
dx

∣∣
.

In other words, the change of p over a de Broglie wavelength

∣∣ ∣∣
should be � |p|.
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Figure 1: Example of a potential V (x) that is finite only in the interval 0 < x < a.

We can relate this back to the potential energy.

p2 = 2m(E − V )

|2pp′| = 2m|V ′|
~

~|p′| = m
p
|V ′| = mλ(x)|V ′|

~|p′| � |p|2 from (38)

mλ(x)|V ′| � |p|2

λ(x)|V ′ |p|2| �
m

The change of potential energy over one wavelength should be � the kinetic energy.

3.3 Bohr-Sommerfeld quantization

The WKB approximation can be used to generalize the old idea that quantum “orbits” should have
action (integral of p dx) that is an integer multiple of h = 2π~. This idea is part of what is called
“old quantum mechanics” because it predates the modern (ca. 1925) formulation in terms of the
Schrödinger equation.

We illustrate this with an example. Consider a potential V (x) such that V (x) = ∞ for x ≤ 0
or x ≥ a and V (x) is finite for 0 < x < a. This is depicted in Fig. 1.

Assume that E > V (x) for all 0 < x < a. Then the solution has the form

1 i x i x

ψ(x) =

(
A

( ∫√ exp p(x′)dx′ +B exp dx′
p(x) ~ 0

− p(x′)
~ 0

√ 1

) ( ∫ ))
1 x

=
(
Aeiφ(x) +Be−iφ(x)

)
φ(x) =

∫
p(x′)dx′

p(x) ~ 0

1
= (C cos(φ(x)) +D sin(φ(x)))

p(x)

From the b

√
oundary condition ψ(0) = 0 and the fact that φ(0) = 0 we obtain C = 0. From

the condition ψ(a) = 0 we find that φ(a) = nπ. Plugging in the definition of φ(x) we find the
quantization condition:

1
∫ a

dx 2m(E
~ n

0
− V (x)) = nπ, (39)

where we have defined En to be the nth energy

√
level.
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As a sanity check, if V (x) = 0 then (39) yields

1 2

a
√ n2π2~

2mEn = nπ ⇒ En = . (40)
~ 2ma2

What if we have “soft” walls? For this we need to connect the oscillating solutions in the allowed
regions with the decaying solutions in the forbidden regions. This is achieved by the connection
formulae.

To see the need for this, let’s examine the integral of p(x) over the classically allowed region of
a harmonic oscillator.

p2 1
H = + mω2x2.

2m 2

The energy levels are of course En = ~ω(n+ 1/2). The turning points are given by solution to the
equation 1mω2x2 = ~ω(n+ 1/2). These are2

x =
√ ~±l 2n+ 1 l ≡

√
. (41)

mω

Let’s see what happens when we integrate p(x)/~ between these turning points. We obtain

1
∫ l
√

2n+1 ∫ l
√

1 2n+1
√

1
p(x)dx = 2m(~ω(n+ 1/2) mω2x2)dx

~ √
−l 2n+1 ~ −l

√
2n+1

−
2

=

∫ l
√

2n+1 1 x2

2n+ 1 dx
2

−l
√

2n+1 l

√
−
l

= (2n+ 1)

∫ 1 √
1− u2du defining u ≡ l

√
2n+ 1

−1

= π(n+ 1/2).

There is an extra factor of π/2 relative to what happens with hard walls. We will see below why
this is.

Before continuing, we can see that the WKB approximation does give a pretty accurate picture
of the harmonic oscillator. In the forbidden region (|x| > l) they describe the wavefunction as
exp√ onentially decaying. Specifically suppose that |x| � l so that κ(x) = 2m(V (x)− En) ≈

2mV (x) = mω|x|. Integrating this we get

√
mω x2 2x

ψ(x) ∝ exp(− ) = e− 2

~
2l , (42)

2

which gives the correct rate of exponential decay.
In the classically allowed region WKB also correctly predicts the number of oscillations of the

wavefunction. But how can WKB predict the π(n+ 1/2) result we found above?

3.4 Connection formulae

When E = V (a) then we say that a is a “turning point”. Turning points separate allowed from
forbidden regions, and therefore oscillating from decaying solutions. However, near a turning point,
the WKB approximation breaks down. So if we want to glue together oscillating and decaying
solutions, we cannot just match boundary conditions at the border. Something nontrivial will
happen at the turning point, which could involve reflection/transmission as well as phase shifts.
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There are two approaches to this, both difficult. One that we will not explore is to use complex
analysis and analytically continue the wavefunction to complex-valued x. In this way we can avoid
going near a: x goes up to a− ε along the real line, then follows a half-circle in the complex plane
to a+ ε and then continues along the real line.

Instead we will follow Griffiths and use Airy functions. Near a turning point, we can approximate
V (x) = V (a) + (a−x)V ′(a) + . . .. To simplify notation shift the origin and the overall energy level
so that a = 0 and E = V (0) = 0. In the vicinity of the turning point, the Schrödinger equation
looks like

~2

−
2m

ψ′′(x) + xV ′(0)ψ(x) = 0 (43)

ψ′′(x) =
2mV ′(0)

~2︸ ︷︷ xψ(x). (44)

α3

We define α in this way so that when we change coordinates to

︸
z = αx then z is dimensionless and

we obtain the dimensionless equation

ψ′′(z) = zψ(z). (45)

This is a second-order differential equation and thus has a two-dimensional space of solutions.
These are called the Airy function Ai(z) and the Airy function of the second kind Bi(z). There
are exact expressions for these that are somewhat unilluminating (see Griffiths or wikipedia for
details), but what will be more useful are the asymptotic formulas. These are oscillatory for z < 0
and exponentially decaying or growing for z > 0. Specifically:

Ai(z) Bi(z)

z � 0 1√ sin
π(−z)1/4

(
2
3(−z)3/2 + π

4

)
1√

π(−z)1/4 cos
(

2
3(−z)3/2 + π

4

)
z � 0 e−

2
3 z

3
2

2
√
πz1/4

e
2
3 z

3
2

√
πz1/4

We can then match up the Airy function near the turning point with the decaying and oscillating
solutions that are valid far from the turning point. This yield connection formulas. The high-level
picture is that in the classically allowed region we have two oscillating solutions, near the turning
point we have two Airy functions as solutions and in the forbidden region we have two exponentially
decaying/growing solutions. At each boundary we have two constraints given by continuity of ψ(x)
and ψ′(x). These give the following connection formulae:

Allowed on the left, forbidden on the right Consider the turning point depicted in Fig. 2(a).
Then we find

2A√
p(x)

sin

(
1

~

∫ a

x
p(x′)dx′ +

π

4

)
+

B√
p(x)

cos

(
1

~

∫ a

x
p(x′)dx′ +

π

4

)
x� a (46a)

⇐⇒ A√
κ(x)

exp

(
−1

~

∫ x

a
κ(x′)dx′

)
+

B√
κ(x)

exp

(
1

a
~

∫ x

κ(x′)dx′ x
a

)
� (46b)

A few words of caution. If B 6= 0 then in the x � a we might be tempted to neglect the A
term. But this will give a bad error in the x� a region.

Conversely if |B| � |A|, then we have to be careful about neglecting it in the x � a region
because it can become dominant for large x.
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(a) (b)

Figure 2: Turning points. In (a) the classically allowed region is on the left and the classically
forbidden region is on the right. In (b) the classically allowed region is on the right and the
classically forbidden region is on the left.

Allowed on the right, forbidden on the left Suppose the turning point is at x = b, as
depicted in Fig. 2(b). Now the connection formula is

A
∫ b B b

exp

(
1 1− κ(x′)dx′

κ(x

)
+ exp

) ~ x κ(x)
x

(
~

∫
κ(x′)dx′

x

x

)√ x� b (47a)

2A π⇐⇒
∫

π B
sin

(
1 1

p(x′)dx′ + +

√
cos p(x′)dx′ +

p(x) ~ b 4

)
p(x)

(
~

∫
b 4

)

Application

√ √ x� b (47b)

to harmonic oscillator Applying these to the harmonic oscillator predicts that
(calculation omitted - see Griffiths) ∫ x0

p(x)dx = (n
−x0

− 1/2)π,

where ±x0 are the turning points. Here we take n = 1, 2, 3, . . ., which is why it matches what we
observed above (where n = 0, 1, 2, . . . is from the conventional way to label the harmonic oscillator

energy levels). To summarize, the Bohr-Sommerfeld quantization condition for 1 b
p(x)dx (where~ a

two hard walls nπ

∫
[a, b] is the classically allowed region) is one hard wall, one soft wall (n− 1/4)π

two soft walls (n− 1/2)π

3.5 Tunneling

We can also use WKB to estimate the rate at which a particle will “tunnel” through a classically
forbidden region, as depicted in Fig. 3(a). This is useful for modeling phenomena such as radioactive
decay.

The transmission probability is

T =
|F |2

|A|2
≈ exp

[
2−
~

∫ c

κ(x)dx
b

]
.

This approximation is valid if the barrier is broad and high.
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(a) (b)

Figure 3: (a) Tunneling through a classically forbidden region. (b) A particle localized in the region
a < x < b will eventually tunnel into the region x > c.

How do we get a lifetime from this? Suppose that the particle is localized in the region a < x < b
in Fig. 3(b). Then we can approximate

1 1 1 τ
lifetime =

tunnel prob per unit time
' = =
T ·# hits per unit time T 1 T

τ

where τ is the period of oscillation within the region a < x < b. This can be approximated by

b dx b dx
τ = 2

∫
= 2 .

a v x)

∫
m

( a p(x)

Putting this together we can approximate the lifetime as∫ b dx
[

2 c

lifetime ≈ 2 m exp
a p(x)

·
~

∫
κ(x)dx

b

]
.

The fact that lifetime scales exponentially with barrier height explains the vast differences we
see in alpha decay. The halflife at which 238U decays to 234Th is 4.5 billion years while the halflife
for the decay of 214Po to 210Tl is 0.164ms; see Fig. 4 for the full decay chain. This difference is due
to the difference in barrier height relative to the energy of the ejected alpha particle.

Figure 4: Decay chain of 238U. From wikipedia article on Uranium-238.

25



MIT OpenCourseWare
http://ocw.mit.edu

8.06 Quantum Physics III
Spring 2016

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

	Time-independent perturbation theory
	Non-degenerate case
	Degenerate perturbation theory

	The Hydrogen spectrum
	Fine structure
	Hyperfine splitting
	Zeeman effect

	WKB
	Introduction to WKB
	Validity of WKB
	Bohr-Sommerfeld quantization
	Connection formulae
	Tunneling


