
Quantum Physics III (8.06) — Spring 2016

Assignment 1

Readings

This week, and in general, you should consider the Griffiths reading as required and the
others as optional.

• Griffiths, Chapter 6

• Cohen-Tannoudji, Chapter XI

• Shankar, Chapter 17

• Sakurai, Sections 5.1-5.3

Problem Set 1

1. The Joy of 2× 2 Hermitian Matrices (10 points)

(a) Compute (~a·~σ)2 (using the formula σiσj = δijI + 3
k=1 iεijkσk) and write down

its eigenvalues. Using also the fact that tr~a·~σ = 0, what can you conclude about
the eigenvalues of ~a ~σ? What about the eigenvalues

∑
· of a0I + ~a·~σ?

(b) Let ~a = (α, 0, β). Write down the exact eigenvalues of ~a·~σ. Write down the
dominant terms and the first two correction terms in the cases when |α| � |β|
and when |α| � |β|. Compare with the results you obtain from second-order
perturbation theory.

(c) Define the inner product 〈A,B〉 ≡ tr[A†B]. Suppose that A = a0I+~a·~σ . Write
2

down Hermitian matrices Q0, Q1, Q2, Q3 such that ai = 〈A,Qi〉.

2. Anharmonic Oscillator (25 points)

Consider the anharmonic oscillator with Hamiltonian

p2
H =

2m
+
mω2x2

+ λx3 ,
2

treating the λx3 term as a perturbation. [Hint: you should not find yourself doing any
integrals as you do this problem; you should find yourself manipulating harmonic oscil-
lator creation and annihilation operators and harmonic oscillator energy eigenstates.]

(a) Show that the first order shift in the ground state energy is zero. Calculate the
shift to order λ2.

(b) Calculate the ground state wave function to order λ. (You may just write your
answer as a sum of harmonic oscillator states.)
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(c) Sketch the potential V (x) as a function of x for small λ. Is the state you found
in (b) anything like the true ground state? What effect has perturbation theory
failed to find?

3. Perturbation of the Three-Dimensional Harmonic Oscillator (30 points)

The spectrum of the three-dimensional harmonic oscillator has a high degree of degen-
eracy. In this problem, we see how the addition of a perturbation to the Hamiltonian
reduces the degeneracy. This problem is posed in such a way that you can work through
it before we even begin to discuss degenerate perturbation theory in lecture.

Consider a quantum system described by the Hamiltonian

H = H0 + δH (1)

where
1

H0 =
2m

~p 2 +
1
mω2~x 2 (2)

2

where ~x = (x1, x2, x3) and p~ = (p1, p2, p3). The perturbing Hamiltonian δH is given by

δH = κL2 (3)

where κ is a constant and where L2 = x3p1 − x1p3.
In parts (a)-(e) of this problem, we study the effects of this perturbation within the
degenerate subspace of states which have energy E = (5/2)~ω when κ = 0.

(a) Set κ = 0. Thus, in this part of the problem H = H0. Define creation and
annihilation operators for “oscillator quanta” in the 1, 2 and 3 directions. Define
number operators N1, N2, N3. Denote eigenstates of these number operators by
their eigenvalues, as |n1, n2, n3〉. What is the energy of the state |n1, n2, n3〉? How
many linearly independent states are there with energy E = (5/2)~ω? [That is,
what is the degeneracy of the degenerate subspace of states we are studying?]

(b) Express the perturbing Hamiltonian δH in terms of creation and annihilation
operators.

(c) What is the matrix representation of δH in the degenerate subspace you described
in part (a)?

(d) What are the eigenvalues and eigenstates of δH in the degenerate subspace? What
are the eigenvalues and eigenstates of H = H0 + δH in the degenerate subspace?

(e) What is the matrix representation of H0 + δH in the degenerate subspace if you
use the eigenvectors of δH as a new basis? (i.e. instead of the original |n1, n2, n3〉
basis.)

[Note: As we shall see in part (f), this problem is “too simple” in important
ways. The aspect of this problem which will generalize when we consider more
generic perturbations is that if a perturbation breaks a degeneracy, then even an
arbitrarily small but nonzero perturbation has qualitative consequences: it selects
one particular choice of energy eigenvectors, within the previously degenerate
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subspace. In the present problem, this can be described as follows: if κ were
initially zero and you were happily using the |n1, n2, n3〉 states as your basis of
energy eigenstates, and then somebody “turns on” a very small but nonzero value
of κ, this forces you to make a qualitative change in your basis states. The
“rotation” you must make from your previous energy eigenstates to the new states
which are now the only possible choice of energy eigenstates is not a small one,
even though κ is arbitrarily small.]

(f) Suppose that |ψ〉 and |φ〉 are eigenstates of H0 with different energy eigenval-
ues. That is, |ψ〉 and |φ〉 belong to different degenerate subspaces. Show that
〈φ|δH|ψ〉 = 0 for any two such states. Relate this fact to a statement you can
make about the operators H0 and δH, without reference to states.

[The fact that 〈φ|δH|ψ〉 = 0 if |ψ〉 and |φ〉 and belong to different degenerate
subspaces means that δH is a “non-generic” perturbation of H0; a more general
perturbation would not have this property. It is only for perturbations with
this property that the analysis you have done above — which focusses on one
degenerate subspace at a time — is complete. Notice also that in order to analyze
H = H0 + δH, we did not have to assume that κ was in any sense small. If δH
were “generic”, we would have had to assume that κ was small in order to make
progress.]

4. Polarizability of a Particle on a Ring; the Ethane Molecule (15 points)

Consider a particle of mass m constrained to move in the xy-plane on a circular ring
of radius a. The only variable of the system is the azimuthal angle, which we will call
φ. The state of the system is described by a wave function ψ(φ) that must be periodic

ψ(φ+ 2π) = ψ(φ)

and normalized: ∫ 2π

0

|ψ(φ)|2dφ = 1 .

(a) The kinetic energy of the particle can be written:

L2

H0 = z (4)
2ma2

where Lz = −i~d/dφ. Calculate the eigenvalues and eigenfunctions of H0. Which
of the energy levels are degenerate?

(b) Now assume that the particle has a charge q and that it is placed in a uniform
electric field ε in the x-direction. We must therefore add to the Hamiltonian the
perturbation

δH = −qεa cosφ.

Calculate the new wave function of the ground state to first order in ε. Use this
wave function to evaluate the induced electric dipole moment in the x-direction:
〈ψ|qx|ψ〉. Determine the proportionality constant between the dipole moment and
the applied field ε. This proportionality constant is called the “polarizability” of
the system.
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Figure 1: A cartoon of an ethane molecule in its most favorable orientation, seen end on.

(c) Now turn off the electric field of part (b) and consider the ethane molecule CH3—
CH3. We will consider the rotation of one CH3 group relative to the other, about
the straight line joining the two carbon atoms, as sketched in figure 1. Here, the
solid circles represent the H atoms in one CH3 group, which rotate relative to the
open circles representing the H atoms in the other CH3 group.

To a zeroth approximation, this rotation is free, and the Hamiltonian H0 of (4)
describes the rotational kinetic energy. (The constant 2ma2 must be replaced by
some new constant times the moment of inertia of a CH3 group with respect to
the rotational axis. However, for simplicity, we will just keep calling the constant
2ma2.)

We now take the electrostatic interaction energy between the two CH3 groups
into account as a perturbation. To take into account the threefold symmetry, we
add to H0 a term of the form

δH = b cos 3φ ,

where b is a real constant. Calculate the energy and wave function of the new
ground state (to first order in b for the wave function and to second order for the
energy). Give a physical interpretation of the result.

5. Energy Shift Due to Finite Nuclear Size (20 points)

When you studied the hydrogen atom in 8.04/8.05, you assumed that the Coulomb
potential extended all the way to the origin. In reality, the proton’s charge is smeared
out over a sphere of roughly 10−13 cm in radius. This has a small effect on the energy
levels of the hydrogen atom. Let’s find out how small.

You will model the electric charge distribution of the proton as a uniformly charged
sphere of radius R. You may ignore the fine structure, Lamb shift, and hyperfine
splittings of hydrogen for this problem.

(a) Find the electrostatic potential energy of the electron for all r.

~[Hint: Use Gauss’s law ∇ · ~E = 4πρ to find the electric field everywhere and then
~integrate F = − ~eE to obtain the potential energy.]
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Your answer should have the features that for r > R you should have V (r) =
−e2/r and for all values of r, V (r) is continuous.

(b) Use lowest order perturbation theory to calculate the shift in the energy of the
ground state of hydrogen due to this modification of the potential. Evaluate your
answer numerically, taking R = 10−13 cm, and express your answer as a fraction
of the binding energy of the ground state (13.6 eV). [Hint: You can simplify the
integrals by noticing that the unperturbed wave function varies only slowly over
the range 0 < r < R and can thus be replaced by the value at r = 0.]

(c) Why is this effect most important for states with orbital angular momentum zero?
Without doing any calculation, make an estimate of the factor by which this effect
is smaller for an ` = 1 state as compared to an ` = 0 state.

(d) Experimentally, the most precise measurement of the proton radius comes from
the PSI experiment:

R = 0.84184(67)× 10−13 cm. (5)

[R. Pohl et al., “The size of the proton,” Nature 466, 213 (2010).] This mea-
surement is controversial, since it differs by 4% from the CODATA world aver-
age (R = 0.8768(69) × 10−13 cm). Putting the controversy aside, explain why
the PSI experiment could get such impressive accuracy using muonic hydrogen
(a muon-proton bound state) instead of ordinary hydrogen (an electron-proton
bound state). [Hint: Recall that the muon has basically the same properties as
an electron, except it is 206.8 times heavier.]
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