Quantum Physics III (8.06) Spring 2005
Assignment 9

April 21, 2005 Due FRIDAY April 29, 2005

Readings

Your reading assignment on scattering, which is the subject of this Problem Set
and much of Problem Set 10, is: Cohen-Tannoudji Chapter VIII, Griffiths Chapter 11.
I have also posted Chapter 11 of Ohanian on the MIT Server. This chapter provides
complementary presentation of the quantum mechanics of scattering, and is highly
recommended but not required.

Problem Set 9

1. Scattering from a Reflectionless Potential (8 points)

Consider a particle of mass m moving in one dimension under the influence of

the potential
2 2

h
V(z) = — ? sech®(ax) .
m

This potential is familiar from Problem Set 8.

(a) This potential has a normalizable bound state with wave function () o
sech(ax). What is its energy? (You obtained this on Problem Set 8.
Therefore, no points for this part.)

(b) Show that
() = (l; + itanh(ax)) expikx

is a solution to the same problem with energy £ = h%k?/2m.

(c) Now consider scattering of a particle with energy E from V(x). Explain
(should be brief) that the solution of part (b) satisfies the boundary con-
ditions appropriate for this scattering problem, with the particle incident
from the left. Use this solution to show that the reflection coefficient is
zero, and to determine the transmission coefficient 7'(F). Show |T'(EF)| = 1.

(d) Show that T'(E) has a pole at the energy of the bound state.

a



2. Simple Properties of Cross Sections (14 points)

Scattering in three dimensions introduces some new concepts: cross sections,
scattering amplitudes, solid angle, to name a few. This problem should help
you understand the basics.

Consider a scattering wave function in three dimensions parametrized by a

function f(0, ¢):
Y(r,0,0) = ™ +

The first term describes an incident plane wave. The second term describes
the scattered flux, scattered off some potential localized in the vicinity of
r = 0. This scattering wave function is only valid at large r. f(6,¢), which
parametrizes the scattered flux, is called the scattering amplitude.

f(ea ¢) eikr )
r

The probability flux for the Schrodinger equation is given by
G- (¢"Vp — V)
2msi

(a) Compute the incident flux. Calculate the scattered flux for 8 # 0. [Note:
when calculating the scattered flux, keep only the dominant term at large
r.]

(b) Define the cross section per unit solid angle by

—

dﬁdQ — lim Sscattered - r

dA |
ds2 r—ee ’Sincident‘

where Sincident 1S the incident flux, Sscatterea 18 the scattered flux, and dA is
a small element of area, dA = r2d(2, on a distant sphere.

Show that
do

[Note that Griffiths denotes do/d2 by the symbol D(6, ¢). This notation
is unconventional, but it is helpful in reminding one what do/dS2 depends
on.

(c¢) From considerations of flux conservation, derive the optical theorem:

_47T

Oelastic = /dQ|f(07 ¢)’2 - ?Imf(e = 0) :



3. Born Approximation for Scattering From Yukawa and Coulomb Po-
tentials, plus a Practical Example of the Latter (15 points)

Make sure you are aware of Griffiths’ Examples 11.5 and 11.6 on page 415 as
you do this problem. He has done some of the work for you.

Consider a Yukawa potential

V) = gep()

r

where 3 and p are constants.

(a)

(b)

Evaluate the scattering amplitude, the differential cross section do/dS2,
and the total cross section in the first Born approximation. Express your
answer for the total cross section as a function of the energy E.

Take § = Q1Q)2 and = 0, and show that the differential cross section you
obtain for scattering off a Coulomb potential is the same as the classical
Rutherford result. Use this differential cross section in part (d) below.

Differential cross sections are what physicists actually use to calculate the
rate at which scattered particles will enter their detectors. The number of
particles scattered into solid angle df2 per second by a single scatterer is
given by

d*N do d°N

dtd) ~ dQ " dtdA
where d?N/dtdA is the incident flux in units of particles per second per
unit area, ie per unit cross sectional area transverse to the beam. Consider
a uniform beam of dN/dt particles per second with a cross sectional area
A. This beam strikes a target with density n (n is the number of scattering
sites per unit volume) and thickness ¢.

Give an expression for the number of particles scattered into a detector
with angular size df) per unit time.

Show that your result is independent of the cross sectional area of the
beam even if the beam is not uniform across this area. [Note that this
is important, because it is typically easy for an experimenter to measure
dN/dt but hard for her to measure either A or the uniformity of the beam
across the cross sectional area.

Consider a beam of alpha particles (¢ = 2e) with kinetic energy 8 MeV
scattering from a gold foil. Suppose that the beam corresponds to a current
of 1 nA. [It is conventional to use MKS units for beam currents. 1 nA is
1072 Amperes, meaning 10~ Coulombs of charge per second. Each alpha
particle has charge 2e, where e = 1.6 x 107! Coulombs.] Suppose the gold
foil is 1 micron thick. You may assume the alpha particles scatter only



off nuclei, not off electrons. You may also assume that each alpha particle
scatters only once. You will need to look up the density of gold and the
nuclear charge of gold (Q)2). How many alpha particles per second do you
expect to be scattered into a detector which occupies a cone of angular
extent (df = 1072 radians, d¢ = 1072 radians) centered at § = /27

(e) Suppose you now move the detector around (keeping it at the same dis-
tance from the target and thus keeping the solid angle subtended by the
detector the same.) How does the number of particles per second seen in
the detector depend on the angular location of the detector, #7 What is

the number of particles per second seen in the detector for § = 10°, = 45°
0 = 135°, 60 = 170°7

4. The Born Approximation in One Dimension (15 points)

(a) Do Griffiths Problem 11.16.

[You need not derive the Green’s function as Griffiths does in his text.
Rather, it is sufficient for you to take the answer Griffiths gives, and show
that it is indeed the integral equation for the one dimensional Schrodinger
equation. |

[Putting it another way, do the one dimensional derivation the way I did
the three dimensional derivation in lecture, not the way Griffiths does the
three dimensional derivation. |

(b) Do Griffiths Problem 11.17.
(¢) Do Griffiths Problem 11.18.

5. The Size of Nuclei (8 points)

In lecture we derived an expression for the scattering amplitude in the Born
approximation for the elastic scattering of a particle of mass m and charge -|e|
from a charge distribution |e|p(7):

2me? -7
Cj) = h2 2 /d3 “

Recall that ¢ = k' — k is the momentum transferred to the scattered particle
in the collision. For elastic scattering, ¢ = |¢] = 2|k|sin(6/2). If the electrons
used in a scattering experiment are relativistic, k ~ E/c.

(a) The charge distribution of a nucleus is not localized at a mathematical
point. f is therefore not exactly that for Rutherford scattering. The
charge distribution is roughly constant out to a radius R and then drops
rapidly to zero. A simple model is:

(7)) = 2
PT A7 R

forr <R



and p = 0 for r > R. Calculate the cross section for electron scattering
from such a nucleus as a function of ¢>.

(b) The ratio of the actual amplitude for scattering from a point nucleus is
called the “form factor”. Sketch the form factor as a function of ¢R.

The form factor tells us about the “shape” of the charge distribution in a
nucleus, and thus tells us how the protons within a nucleus are arranged.
In our simple model, the form factor tells us the value of R. If nuclei
had precisely the shape we have used in our simple model, experimenters
would measure a form factor with precisely the functional form you have
calculated, and would then do a fit to obtain a measurement of R, the
radius of the nucleus.

(c) For relativistic electrons with energy E, if you are able to count the scat-
tered electrons at a variety of angles, ranging from 6 close to zero to 6 close
to m, what range of ¢ can you access? If you use electrons with £ < 1/R,
show that you will not be able to make an accurate determination of R.
You will not be able to “resolve” the fact that scattering off a nucleus
differs from Rutherford scattering.

The values of R for nuclei are around (2—7) x 107'* cm. Roughly how large
an electron energy do you need in order to do a reasonable measurement
of R?

First aside: The above problem uses a simple model, but it is not all that
far from the real thing. I am attaching copies of some figures of real data on
electron-nucleus scattering, along with the inferred nuclear charge distributions.

Second aside: The next step in the process of unveiling the structure of matter
on smaller and smaller length scales was the discovery that the protons and
neutrons that make up a nucleus have substructure. Electron beams with en-
ergies appropriate for studying nuclear structure (ie the distribution of protons
within a nucleus, which you've been analyzing in this problem) cannot resolve
the substructure of a proton. Thus, the discovery of the quark structure of the
proton had to wait until the construction of the SLAC linear accelerator, which
began accelerating electrons to 18 GeV in the late 1960’s. In 1967, Jerome
Friedman, Henry Kendall and Richard Taylor began the series of experiments
in which quarks were discovered. When an 18 GeV electron scatters at large
angles off a quark in a proton, the proton does not remain intact. This means
that the description of these experiments requires an understanding of inelastic
scattering. In an inelastic collision, the scattered electron’s momentum changes
by ¢, and its energy also changes. The analysis of such collisions goes beyond
what we can reasonably cover in 8.06. However, you might try to persuade Prof.
Liu to tell you a little about it in section.
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Fig. 48 Electron elastic-scattering form factor for 1%0. The experimental data of
McCarthy and Sick {24} are shown by dots. The full line is the theoretical fit obtained
by assuming a closed-shell configuration and using harmonic-oscitlator wave functions;
the dashed curveis obtained from Woods-Saxon wave functions. (After Donneily and Walker

{25} ?
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4.1 Experimental elastic electron-scattering differential cross-section from gold
197Au at energies of 126 MeV and 183 MeV. The fitted curves are calculated
with &n assumed charge distribution of the form given by equation (4.1), with
R=6.63 fm, a=0.45 fm. The cross-section to be expected, at 126 McV, if the
gold nucleus had a point charge is shown for comparison. (Data and
theoretical curves taken from Hofstadter, R. (1963), Electron Scattering and
Nuclear and Nucleon Structure, New York: Benjamin.)
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42 The electric charge density of 235Pb from a model-independent analysis of

electron scattering data. The bars indicate the uncertainty. (Friar, J.L. &
Negele, J. W. (1973), Nuc. Phys. A212,93)
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3_2 Nuclear _sizés and masses

by-a simple mathematical expression involving a few parameters, and then
aetermine the parameters by fitting to the scattering data. A form which has

been widely adopted is

N - 3 |
_ Pm(f)—w, 4.1

_where the parameters to be determined are R and g, and p3 is a

normalisation constant chosen so that

J. p,h(r)dsr=4n J‘ ° Palnir? dr==2.
. Jo

It should be stressed that the choice of this expression has no fundamental
significance; it just conveniently describes a charge distribution which
extends almost uniformly from the centre of the nucleus to a distance R, and
falls to zero over a well-defined surface region of thickness ~¢. This picture
is consistent with the results of direct inversion. '

In Fig. 4.3 we show nuclear charge distributions for a light (1§0), a

medium (*{3Ag) and a heavy (*33Pb) nucleus obtained from experimental

scattering data, using this parametrisation of the charge density. The
corresponding values of R and a are given in Table 4.1
As the examples in the table indicate, it appears that there is a well-

43 The electric charge density of three nuclei as fitted by p.{r)=
p%/{1 +expiir— R)/a)]. The parameters are taken from the compilation in
Barrett, R. C. & Jackson, D. F. (1977), Nuciear Sizes ond Structure, Oxford:
Clarendon Press.

0.06

Poy (1) (fm)?
o
g

0.02

Table 4.1. Nuclear radii (R) and nuclear Surface

widths (a)
R a 1
Nucleus (fmm) ' {fm} (ﬁﬁ
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