
Quantum Physics III (8.06) Spring 2005

Assignment 8


April 5, 2005	 Due WEDNESDAY April 20, 2005 

Readings 

•	 Griffiths Chapter 8 on the semiclassical approximation. 

•	 Griffiths Chapter 10 on the adiabatic approximation. 

•	 The article by Wick Haxton on the Solar Neutrino Problem is optional

extra reading.


•	 Note that I have not given you a problem on Berry’s phase. The classic example 
is Griffith’s Example 10.2, and I decided that it is too much to ask you to work 
through any example other than this one. And, I will do this example in lecture. 
You should make sure you understand Berry’s phase and this classic example, 
even though it will not appear on a problem set. If you want to do another 
example, try Griffiths’ Problem 10.6. 

Problem Set 8 

1.	 Using the Semiclassical Approximation on the Ground State (8 points) 

Despite the fact that the semiclassical approximation was derived for states of 
large action, we shall see that it does a pretty good job on the ground states of 
simple potentials. For example, it gets that of the harmonic oscillator exactly 
right. Here is another example where the exact solution is known, and you can 
check how well the semiclassical approximation does. This problem is based on 
Griffiths’ Problem 8.12. 

Consider a particle of mass m moving in the potential 

h2¯ a2 

V (x) = − sech2(ax) . 
m 

(a) Show that ψ(x) = Asech(ax) is the wave function for a bound state in this 
potential. How do you know that this bound state must be the ground 
state? What is the energy of this state? 
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(b) Apply the semiclassical approximation to this potential to estimate the low­
est energy eigenvalue. Compare your result with the exact result from part 
(a). 

2.	 Quantum Mechanics of a Bouncing Ball (8 points) 

The semiclassical approximation can also be used to estimate the energy eigenval­
ues and eigenstates for potentials that cannot be treated exactly so easily. This 
problem is loosely based on Griffiths’ 8.6. (See Griffiths’ 8.5 if you’d like to learn 
how to treat this quantum mechanical problem exactly, using Airy functions.) 

Consider the quantum mechanical analogue to the classical problem of a ball of 
mass m bouncing elastically on the floor, under the influence of a gravitational 
potential which gives it a constant acceleration g. 

(a) Find the semiclassical approximation to the allowed energies En, in terms 
of m, g and h̄. 

(b) Estimate the zero point energy of a neutron “at rest” (ie in the quantum 
mechanical ground state) on a horizontal surface in the earth’s gravitational 
field. Express your answer in eV. [This may sound artificial to you, but the 
experiment has been done. See V. V. Nesvizhevsky et al., Nature 415, 
297 (2002) and arXiv:hep­ph/0306198 for an experimental measurement of 
the quantum mechanical ground state energy for neutrons bouncing on a 
horizontal surface in the earth’s gravitational field. This experiment got 
a lot of press at the time, because it involves both gravity and quantum 
mechanics, which made for an eye catching press release. It of course has 
nothing to do with quantum gravity.] 

(c) Now imagine dropping a ball of mass 1 gram from rest from a height of 
1 meter, and letting it bounce. Do the 8.01 “calculation” of the classical 
energy of the ball. The quantum mechanical state corresponding to a ball 
following this classical trajectory must be a coherent superposition of energy 
eigenstates, with mean energy equal to the classical energy. How large is 
the mean value of the quantum number n in this state? 

3.	 Application of the Semiclassical Method to the Double Well Potential 
(22 points) 

Do Griffiths Problem 8.15. 

This is an instructive problem in quantum dynamics. You should recall that this 
is the potential that we used to describe the physics of the ammonia molecule, 
early in 8.05. Back then, we had to wave our hands a little when we talked about 
tunnelling splitting the degeneracy between the even and odd states. Now, you 
can do this calculation for real. 
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What follows is an extended hint/suggestion for a slightly different way to do the 
problem than that which Griffiths sets up. I believe this suggestion should help 
you with parts (a) and (b), but you do not need to follow it, if you prefer going 
along with Griffiths precisely. 

On page 336, there are three expressions (i), (ii) and (iii) for the wave function 
in three regions. (i) and (ii) are straightforward to demonstrate, and you should 
begin by doing so. However, I suggest that (iii) is not a particularly convenient 
expression for the wave function in this region, although it is correct, and you 
may therefore bypass showing (iii) as I now explain. 

Since you know you are looking for either an even or an odd function of x, things 
simplify. Lets consider the even case; you can handle the odd case yourself. If 
the wave function is even, then in the region −x1 < x < x1 [which is region (iii) 
and its reflection] it must take the form: 

xC 1 
ψ(x) = � cosh 

¯
dy κ(y) (1) 

κ(x) h 0 

where κ(x) is our standard notation for what Griffiths would call |p(x) . There |
are then two stages to the logic of the next step of the argument: 

•	 FIRST: apply connection formulae at x = x1 to (1), and get from (1) an 
expression for ψ(x) in region (ii), ie x1 < x < x2. 

•	 SECOND: show that in order for the expression you have obtained to be the 
same as Griffiths’ expression (ii) — which you remember you have already 
demonstrated — a certain condition must be satisfied that turns out to 
imply Griffiths equation (8.59), with the plus sign. When you’re doing the 
odd case instead of the even case, you’ll find (8.59) with the minus sign. 

(8.59) is the key result from which the later parts of the problem all follow. By 
doing things as above, you get to (8.59) without ever using Griffiths form (iii). If 
you do things as above, you can (if you like) go back after having derived (8.59) 
and show that (8.59) turns (1) into Griffiths form (iii). If you do things as above, 
you will find that in the step labelled ”SECOND” above, there is some algebra, 
but significantly less than doing it Griffiths’ way. 

Also, you’ll find that you have to think through and explain a subtlety in the step 
labelled ”FIRST” above. You need to use connection formulae to get from the 
cosh of equation (1) into region (ii). You’ll find that this means that you must 
use one of the connection formulae “in the direction of the arrow”, ie in the legal 
direction, but you must use another connection formula in the ILlegal direction. 
You should think through the explanation I gave in lecture of why going against 
the arrow is in general illegal, and then see why in the specific circumstances of 
this problem it is in fact legal. 
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4.	 Vibrational and Rotational Spectra in the Born­Oppenheimer Approx­
imation (8 points) 

Consider the vibrational and rotational energy of a diatomic molecule in the 
Born­Oppenheimer approximation. We expand the internuclear energy about 
the equilibrium position R0 and include the rotational energy: 

h2 

E (R, J) = 
mω2 

(R − R0)
2 + 

J(J + 1)¯
. 

2	 2mR2 

(a) Find the position where the energy is a minimum. 

Note: your answer will take the form Rmin = R0 + δR, and you may assume 
throughout this problem that δR � R0. This approximation is equivalent 
to assuming that the rotational energy is much less than h̄ω, the spacing 
between vibrational levels, which is the case for reasonable values of J and 
realistic values of ω and m and R0 for real molecules. 

(b) If the moment of inertia of the molecule is calculated using the new inter­
nuclear separation that is, if the rotational energy is written as 

h2J(J + 1)¯
2mR2 , 

min 

show that the rotational energy can be written in the form 

EJ = AJ(J + 1) + BJ2(J + 1)2 + . . . 

Determine the coefficients A and B. The second term describes “centrifugal 
distortion”. 

Note: By making precise measurements of the frequencies of the spectral 
lines emitted as the molecule makes transitions between rotational states 
with varying J , it is straightforward to make an experimental measurement 
of A and B. Given that m is known by other means, your result shows how 
to make an experimental determination of ω and R0. 
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5. Adiabatic Spin Rotation (6 points) 

Consider a spin one­half particle at rest, with its spin free to rotate in response 
to a time­dependent magnetic field. The Hamiltonian of the system is 

H =
2µ0 � �B(t) .S ·− 
h̄

At t = 0 there is a magnetic field �B(0) = (0, 0, B0), and the spin is aligned along 
the magnetic field, with 

ψ(0)� =| | ↑� . 

Now suppose that the magnetic field is very slowly decreased to zero and then 
increased in the opposite direction, 

B(t) = (0, 0, B0 − βt) , 

until at time tf = 2B0/β, we have �B(tf ) = (0, 0, −B0). In addition, assume that 
there is a small, constant residual magnetic field in the xy­plane, δ �B = (Bx, By , 0). 
[After all, it would be unrealistic to assume that the magnetic field is exactly zero 
when t = B0/β.] 

Use the adiabatic theorem to show that the particle initially in the state | ↑� 
finishes in the state ↓� with unit probability, regardless of the direction that δ �B|
points in the xy­plane. What is the condition on the parameters of the problem 
for the adiabatic theorem to apply? 

[Aside: If the adiabatic theorem applies, the particle is in the state with spin 
parallel (as opposed to antiparallel) to the magnetic field at the end of the evo­
lution just as at the beginning. This property is applied in the magnetic traps 
used by MIT atomic physicists to trap very cold gases of spin­polarized atoms. 
The magnetic field gradients are designed so that an atom which has its spin 
parallel to the local magnetic field �B(x) experiences a force toward the center of 
the trap. Those atoms with spins antiparallel to �B(x) feel a force which expels 
them from the trap. This raises a question: since �B(x) varies in space. how do 
we ensure that as the atoms move within the trap their spins are always aligned 
with the local magnetic field? Answer: the atoms are moving slowly enough that 
the adiabatic theorem applies. You should now be able to explain the importance 
of the following design feature of the traps: since it is magnetic gradients which 
exert the trapping forces, you might think that there would be no problem if at 
one point in the trap, �B = 0; in fact, this does cause problems, and the traps are 

B = 0 everywhere. Explain.] designed to have � �
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6. Engineering Adiabatic Transitions (8 points) 

This problem is similar to the last one, except that now the particle has spin one, 
and therefore has three eigenstates +�,| |0� and |−�. 
The Hamiltonian is given by 

c 
H =

2µ0 � �
h2 .z− 

h̄
S · B(t) − 

¯
S2 

The last term represents some small term in the environment of the spin which 
favors the states |±� over the state 0�.|

(a) Write the operators Sx, Sy and Sz for this problem. (You should be able to 
find them in your 8.05 notes or in one of your books.) 

(b) Suppose that the magnetic field is as in the previous problem, with a small 
constant field in the x­direction and a large time­dependent field in the 
z­direction: 

B(t) = (Bx, 0, B0 − βt) .


Assume the following hierarchy of energies:


hβ/Bx .µ0B0 � c � µ0Bx � ¯

Sketch the energy levels of this system as a function of time. 

(c) Suppose the system starts out in the state |−� at t = 0. Show that upon 
assuming the hierarchy of energies above, this state evolves to a state that is 
approximately equal to 0� and then evolves to +�. Explain how you would ||

B(t) in order that the initial state transforms alter the time dependence of �


into 0� at late times.
|
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