
Quantum Physics III (8.06) Spring 2005

Assignment 6


March 8, 2005	 Due March 15, 2005 

Readings 
The reading assignment for this problem set is: 

•	 Griffiths all of Chapter 6. 

•	 Cohen­Tannoudji Chapter XI including Complements A­D. Also, Chapter XII. 
(I could really have put CT Ch. XII on the reading list already last week. It 
provides more detail (as always with CT!) on a number of classic examples of 
the application of perturbation theory in atomic physics.) 
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Problem Set 6 

1. The Feynman­Hellmann Theorem (8 points) 

Do Griffiths problems 6.32. (That’s 6.27 in Griffiths’ 1st Ed.) 

[At the end of Problem 6.32, Griffiths asks you to “Compare your answers to 
Problem 2.12 and the virial theorem predictions.” You can skip the comparison 
to Problem 2.12, but you must do the comparison to what the virial theorem 
predicts.] 

[Aside: Feynman figured out the Feynman­Hellmann theorem as part of his 
undergraduate senior thesis, done at MIT in the late 1930’s. His senior thesis 
advisor was Slater, he of the determinant. Note that at MIT we do not expect 
that our undergraduates write senior theses which become part of the standard 
undergraduate physics curriculum a few decades later. Of course, we don’t mind 
when it happens! 

So, who was Hellmann? I did not know the answer, and have put this question to 
several former 8.06 classes. Two years ago, a student found the answer for me on 
the following web page: http://www.tc.chemie.uni­siegen.de/hellmann/hellbioe.html 
(Thanks to Michael Mortonson for finding this.) Hans Hellmann was a German 
quantum chemist, born in 1903. He derived the theorem in 1933. Feynman 
derived it later, independently of Hellmann. Hellmann’s wife was Jewish, and 
for this reason he was fired as an assistant professor in Hannover in late 1933. 
He fled to Russia, and in the next several years he wrote pioneering papers on 
quantum chemistry, and the first text book on the subject. Alas, in 1938 he 
was one of the millions “liquidated” during Stalin’s “Great Terror”. Now that 
I know the story, I am saddened that he is not now well­known, although since 
his career was cut so short this is perhaps not surprising. At the least, you and 
future 8.06 students will hear of him.] 

2. Energy Shift Due to Finite Nuclear Size (8 points) 

When you studied the hydrogen atom last semester, you assumed that the 
Coulomb potential extended all the way to the origin. In reality, the proton’s 
charge is smeared out over a sphere of roughly 10−13 cm in radius. This has 
a small effect on the energy levels of the hydrogen atom. Let’s find out how 
small... 

Model the electric charge distribution of the proton as a uniformly charged 
sphere of radius R. 

(a) Find the electrostatic potential energy of the electron for all r. 

[Hint: Use Gauss’s law � E = 4πρ to find the electric field everywhere � · 
�

�

and then integrate � = −eE to obtain the potential energy.] F 
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� � � � 

[Answer: V (r) = −e2/r for r > R and 

� 1 � 

V (r) = −e 2 
� 

1 � 
R2 − r 2 + 

2R3 R 

for r < R.] 

(b) Use lowest order perturbation theory to calculate the shift in the energy 
of the ground state of hydrogen due to this modification of the potential. 
Evaluate your answer numerically, taking R = 10−13 cm, and express your 
answer as a fraction of the binding energy of the ground state (13.6 eV). 
[Hint: You can simplify the integrals by noticing that the unperturbed 
wave function varies only slowly over the range 0 < r < R.] 

(c) Why is this effect most important for states with orbital angular momen­
tum zero? Without doing any calculation, make an estimate of the factor 
by which this effect is smaller for an � = 1 state as compared to an � = 0 
state. 

3. Weak­Field Zeeman Effect (18 points) 

When an atom is placed in a uniform external magnetic field B, the energy 
levels are shifted. This Zeeman effect is described by the Hamiltonian 

e �	 � S = � S (1) H � = B · L + 2 �
e

B · J� + �Z 2m	 2m 

In this problem, we shall assume that �B is small enough that the fine structure 
effects on the energy levels (discussed in lecture and in Section 6.3 of Griffiths) 
are larger than the Zeeman effects. 

Because we are assuming that the fine structure effects (including the spin­orbit 
coupling) are “big”, we’d better use the n�jmj � basis. These also turn out to |
be the “good” states with which to analyze the Zeeman effect. We seek to 
evaluate the first­order Zeeman correction to the energy: 

E1	 ≡ �n�jmj H
� n�jmj � = 

e 
(2) Z | Z |	 � J + �

2m
B · � � S� 

(a) Lets begin, though, with some numerical estimates, so that you understand 
the regime in which the calculation you are doing is valid. Use Griffiths 
equation 6.66 (which you will have seen in lecture also) to evaluate the fine 
structure corrections to all eight n = 2 levels of the hydrogen atom. Give 
the energies (and degeneracies) of these levels. (Energies in electron­Volts.) 

(b) Now, let’s	 make an order of magnitude estimate of the Zeeman effect. 
Pretend (only in this part of the problem) that the gyromagnetic ratio for 
the electron is g = 1 instead of g = 2. This should be good enough for 
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�

�

an order of magnitude estimate, but will of course not yield the correct 
dimensionless factors in the results. Write the Zeeman Hamiltonian in 
this case, and evaluate E1 

Z . Explain why this is much easier than the real 
(g = 2) calculation. Use this simple calculation to estimate the order of 
magnitude of the Zeeman shifts to the energy levels. Then, by comparison 
to the fine structure splitting between levels which you found in part (a), 
estimate for what values of |B (in gauss or Tesla) the Zeeman corrections |
are smaller than the fine structure corrections. 

[Your answer should tell you that while there are certainly experimental 
circumstances in which the weak­field approximation we are using here 
is valid, it is also possible to apply fields which are strong enough that 
the “strong­field” or “intermediate­field” analyses described in Griffiths 
become appropriate. In the strong field analysis, which I recommend you 
read in Griffiths, you treat the Zeeman effects as “big” and then add the 
fine structure effects on as a further perturbation. Ie the opposite order to 
the way we are handling the present weak­field analysis.] 

(c) Suppose that the magnetic field is in the z­direction. Evaluate E1 for a Z 

state with j = � + 1/2 and for a state with j = � − 1/2.


[Hint: in order to evaluate �Sz �, you will have to use Clebsch­Gordan

coefficients to write the state n�jmj � as a linear combination of several
|
n�m�ms� states. You should look up the Clebsch­Gordan coefficients you |
need in a table.] 

(d) Consider once again the eight n = 2 states 2�jmj �. Make an energy level |
diagram (like Griffiths Fig. 6.11) to show how the energies change as |B is|
increased. Label each line clearly, and indicate its slope and its degeneracy, 
if any. 

(e) Show that if n�1 jmj1� and n�2jmj2� are two different states with the |	 |
same Bohr and fine structure energies (and therefore the same n and j 
but not necessarily the same � and mj ) then �n�1jmj1 Jz + Sz n�2jmj2� is| |
zero unless �1 = �2 and mj1 = mj2. This is the demonstration that the 
states n�jmj � are the “good” unperturbed states upon which the effects of |
the Zeeman perturbation can be calculated using our perturbation theory 
formalism. 

(f) Griffiths analyzes the weak­field Zeeman effect differently.	 Let us see how 
he does it. Griffiths argues (on page 245) that because the operator �S pre­

cesses rapidly around the operator J� (which itself precesses slowly around 
� S by B), we can replace �

( � J�)
Save = 

S · 
J� . 

J 2 
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� � 

Under this approximation, show that 

E1 e 
= g(�, j)mjZ 2m 

where g(�, j) is called the Landé g­factor and is given by 

g(�, j) = 1 + 
j(j + 1) − �(� + 1) + 3/4 

. 
2j(j + 1) 

[Showing this means reproducing a paragraph of Griffiths, with details 
filled in.] 

Upon first reading, you may think this derivation sounds fishy. To make 
you feel better about it, check that for both j = � + 1/2 and j = � − 1/2 the 
result you obtain in this part of the problem agrees with that you found 
in part (c), by straightforward use of degenerate perturbation theory. 

[You may also use the Landé g­factor to check the figure you drew in part 
(d). I will not ask you to hand in this check.] 

4. Stark Effect for n = 3 States of Hydrogen (12 points) 

Consider a hydrogen atom placed in an electric field ε, oriented in the z­
direction. The associated perturbation to the Hamiltonian, called the Stark 
Hamiltonian, is 

H � = −eεz = −eεr cos θ (3) S 

In this problem, you may ignore all fine structure effects, and pretend that 
the electron has no spin. Ie just think of H � as a perturbation to the Bohr S 

Hamiltonian. 

We will discuss the first order corrections to the energies of the ground state 
(n = 1) and the first excited states (n = 2) in lecture. 

In this problem, I ask you to work out the first order corrections to the energies 
of the n = 3 states. In the absence of an electric field, these are 9 degenerate 
states, so I am asking you to do degenerate perturbation theory with a 9 × 9 
degenerate subspace. 

(a) Evaluate the 81 matrix elements of H � in the degenerate subspace, but be S 

smart about it. 

First of all, use symmetries (and various properties of the spherical har­
monics) to argue that many matrix elements are zero. Symmetries also 
relate some matrix elements to others. If you are sufficiently clever, you 
can show without calculation that there are only 3 different nonzero matrix 
elements to calculate. (You may not quite be able to get it down to 3, but 
you should be able to get it down to a lot fewer than 81.) 
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Once you have boiled the problem down to the evaluation of a few ma­
trix elements, you will need to look up the unperturbed n = 3 hydrogen 
wave functions in one of your books, and do the integrals. Reduce each 
integral to a combination of dimensionful constants times a dimensionless 
integral. Do the dimensionless integral by hand if you wish (!), but I would 
recommend using Matlab/Maple/Mathematica. 

Even if you were not able to argue your way all the way down to only 
3 different nonzero matrix elements without calculation, once you have 
done the explicit calculations that is what you should find, regardless. See 
whether (after the fact) you can construct the symmetry arguments that 
could have told you before the fact that there are only 3 different nonzero 
matrix elements. 

(b) Find the eigenvalues	 of the 9 × 9 matrix you have constructed in part 
(a), and determine the energies of the 9 states in an electric field, to first 
order. I will not ask you to list the zeroth order “good” states (ie the 
eigenstates of the matrix constructed in part (a)). However, show that 
each of these nine “good” eigenstates (in addition to being an eigenstate 
of HS ) is an eigenstate of Lz with eigenvalue m�, even though many of them 
are superpositions of states with different values of � and are therefore not 
eigenstates of L2 . Make a separate energy­level diagram for the states with 
each value of m�. Put these five energy level diagrams next to each other 
on your page, for m� = −2, −1, 0, 1, 2 from left to right. 

[The resulting level diagram has several symmetries, all of which can be 
understood and related to the symmetries you (may have) used to boil 
your calculational task down to the calculation of three matrix elements. 
I leave the task of working out how to understand the symmetries of this 
level diagram for you to do on your own, as I do not see how to pose the 
required questions without first telling you what the level diagram looks 
like, and you are supposed to figure that out!] 

5. Van der Waals Interaction between two “toy­model atoms” (14 points) 

Do Griffiths’ problem 6.31. (This problem does not occur in Griffiths’ 1st Edi­
tion.) Note that you should use Gaussian cgs units, as we do in 8.06. That 
means you should set 4π�0 to 1 in Eq. (6.97) and in many subsequent expres­
sions. 
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