
Quantum Physics III (8.06) Spring 2005

Assignment 5


Tuesday March 1, 2005 Due Tuesday March 8, 2005 

Readings 
The reading assignment for this problem set and part of the next one is: 

• Griffiths all of Chapter 6. 

• Cohen­Tannoudji Chapter XI including Complements A­D. 

Problem Set 5 

1. The Fractional Quantum Hall Effect (5 points) 

We will not be able to study the fractional quantum hall effect in 8.06. However, 
I want to give you at least a some sense of it, at a qualitative level. At the very 
least, I want to convey how the discovery of this effect was even more of a 
surprise than the discovery of the integer quantum hall effect. This problem is 
a bona fide part of this problem set, and “counts” in that sense. However, the 
material alluded to in this problem will not appear on the midterm or final. 

The fractional quantum hall effect was discovered in 1982 by Tsui, Störmer 
and Gossard. They studied a very clean sample of the same sort in which the 
integer quantum hall effect had been discovered two years earlier. At a low 
temperature, and in a high enough magnetic field, they discovered a plateau 
with 

1 1 e2 

= and Rlong = 0 (1) 
Rhall 3 h


occurring over a range of filling fractions centered at


nhc 1 
= . 

eB 3 

If we attempt to describe this with 8.06 physics, we would say we have a one­
third filled Landau level, and as such would have very many degenerate ground 
states to choose between, corresponding to the choice of which third of the states 
that make up the lowest Landau level we fill, and which two thirds we leave 
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empty. Depending on what choice among the many possibilities we made, we 
could find many different values of Rhall and would generically find Rlong = 0. 
This cannot describe the experimental result. 

The correct description of the fractional quantum hall effect relies crucially on 
the Coulomb interaction between the electrons. The state described by the 
“Laughlin wave function”, named after Robert Laughlin who proposed it as a 
way to understand the experimental results, cannot be described by first solving 
for single electron wave functions, and then filling some of these while leaving 
others empty. In other words, it is not a direct product of single electron wave 
functions. It is an intrinsically many­electron wave function, requiring methods 
beyond those we shall learn in 8.06 to study. However, we can understand at a 
qualitative level why its discovery required a very clean sample: in order for the 
fractional quantum hall effect to be observed, the effects of Coulomb repulsion 
between the electrons must dominate over the interaction between electrons 
and impurities. In the time since Tsui et al’s discovery, as ever cleaner samples 
have been studied, plateaus have been seen at more and more fractional hall 
conductivities, for example at 1/3, 2/5, 3/7, 4/9, 5/11, 6/13, . . . and 2/3, 3/5, 
4/7, 5/9, 6/11, 7/13, . . . and many more. It turns out that all these states are 
described by nondegenerate ground state wave functions, very different from the 
massively degenerate states we would construct à la 8.06, starting with single 
electron states, ignoring Coulomb interactions, and simply filling a fraction of 
a Landau level. 

The purpose of this problem is for you to work out one very surprising conse­
quence of the existence of the “1/3­plateau”. Take the experimental facts (1) 
at nhc/eB = 1/3 as given. Imagine inserting an infinitesimally thin solenoid 
within this sample, perpendicular to the plane of the sample. (The flux tube 
“pokes through” the sample. This is a thought experiment.) Slowly increase 
the flux through this solenoid from zero to Φ0, the quantum of flux. Now, 
consider a circular path, within the sample, encircling the flux tube at a great 
distance. Use the experimentally measured hall conductance to determine how 
much charge crosses this circular path as the flux in the solenoid increases from 
0 to Φ0. Call your answer “Q”. Determine the magnitude of Q but do not 
worry about its sign. 

You’ve now completed the problem I’ve posed for you, but lets take a minute 
to understand the significance of the answer. From our study of the Aharonov­
Bohm effect, we can conclude that the Hamiltonian of the system is the same at 
the beginning and the end of the shenanigans you have performed above. Flux 0 
and flux Φ0 in your flux tube give the same Hamiltonian for the electrons in the 
sample. However, because your flux tube penetrates through the sample, during 
the time the flux was increasing it can have had a nontrivial effect (beyond just 
the Aharonov­Bohm effect) on those electrons whose wave functions are nonzero 
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at the location of the solenoid, and which thus feel the magnetic field in the 
solenoid. What this means is that although the Hamiltonian at the end of your 
shenanigans is the same as at the beginning, the state of the system may now be 
in an excited state, with a different energy. Assuming that the system started 
in its ground state, it could now be in an excited state. In fact, this is what has 
happened. By increasing the flux in the solenoid as you did, you have created 
an excitation of the system, with some finite but nonzero energy, localized in the 
vicinity of your flux tube. The calculation you did above determines the charge 
Q of this excitation. This argument, due originally to Laughlin, shows that 
(regardless of what the detailed description of its ground state wave function 
turns out to be) the observed 1/3 quantum hall plateau must be described by 
a Hamiltonian which includes localized excitations whose charge is Q. This 
should convince you that its ground state wave function is quite nontrivial! In 
addition to being nondegenerate, the ground state is also “incompressible”. If 
you think carefully about the thought experiment you analyzed, you should get 
a sense of the meaning of this term in this context. 

2.	 A Delta­Function Bump in the Center of an Infinite Square Well (20 
points) 

Parts of this problem are similar to Griffiths’ problems 6.1 and 6.4. 

Suppose that H0 describes a particle of mass m in an infinite potential well with 
V (x) = 0 for −a/2 < x < a/2 and V = ∞ elsewhere. Now add a delta­function 
bump in the center of the infinite square well: 

H � = αδ(x) 

where α is a constant. 

0(a) Write down the eigenfunctions ψn(x) of the unperturbed Hamiltonian H0. 
Make sure that they are properly normalized.


[Note: the notation here is that the ground state of H0 is the “n = 1”

state. That is, the unperturbed energies are
 0En = n
2π2h̄2/(2ma2) for 
n = 1, 2, 3, . . ..] 

(b) Find the first­order correction to the allowed energies. Explain why the 
energies are not perturbed for even n. 

(c) Write	 down the expression for the change in the wave function of the 
ground state due to H1 to first order in α. Evaluate the integrals that 
occur, but do not attempt to do the sum. 

(d) Write an expression for the probability to find the particle at x = 0 in 
the ground state, |ψ1(0)

2, that is accurate to first order in α. Evaluate |
2your result as a function of the parameter maα. Plot |ψ1(0)

2/ ψ1
0(0)|	 | |
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versus maα and give a physical reason for the shape of the curve. Give 
an estimate for the size of α where you would no longer trust first order 
perturbation theory even qualitatively. 
[In this part, you will need to perform an infinite sum. You can compute 
it numerically, analytically, use Mathematica, or just estimate it.] 

(e) Find the second­order corrections to the energies (ie find E2 
n). For what 

value of maα is the second order correction to the ground state energy 
equal to the first order correction? [This is another way of estimating at 
what point perturbation theory is no longer a reliable guide.] 

(f) This problem can be solved exactly. Define kn = 
√

2mEn/h̄ and use 8.04 
methods to show that the exact energy eigenvalues En must satisfy either 
sin(kna/2) = 0 (for even n) or tan(kna/2) = −h̄2kn/(mα) (for odd n). 
Discuss these exact results in the limit of small α, and show that the first 
order order approximation to the energies that you obtained in part (b) is 
in fact the first order approximation to the exact energies. 
[Optional: show that the second order approximation you obtained in part 
(e) is the second order approximation to the exact energies.]

[Even more optional: in parts (c) and (d), you found ψ1(x) to order α. Now,

find the exact ground state wave function ψ1(x) and use this to evaluate

|ψ1(0) 2/ ψ0


1 (0)|2 . Plot this exact result along with the approximate result |	 |
that you obtained in part (d).] 

3.	 A Delta­Function Interaction Between Two Bosons in an Infinite 
Square Well (5 points) 

Do Griffiths problem 6.3.


[The integrals that come up in this problem can certainly all be done by hand;

however, there is also nothing wrong with doing them by Mathematica or the

equivalent. By this time in your life, you should not spend time doing elemen­

tary integrals.]


4.	 Anharmonic Oscillator (15 points) 

Consider the anharmonic oscillator with Hamiltonian 
2 2p mω2x

H = + + λx3 ,
2m 2 

treating the λx3 term as a perturbation. [Hint: you should not find yourself do­
ing any integrals as you do this problem; you should find yourself manipulating 
harmonic oscillator creation and annihilation operators and harmonic oscillator 
energy eigenstates.] 

(a) Show that the first order shift in the ground state energy is zero.	 Calculate 
the shift to order λ2 . 
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(b) Calculate the ground state wave function to order λ. (You may just write 
your answer as a sum of harmonic oscillator states.) 

(c) Sketch the potential	 V (x) as a function of x for small λ. Is the state 
you found in (b) anything like the true ground state? What effect has 
perturbation theory failed to find? 

(d) Now consider instead an anharmonic oscillator with 

2 2p mω2x
H = + + λx4 ,

2m 2 

treating the λx4 term as a perturbation. Calculate the energy of the ground 
state to order λ. Sketch V (x) for λ small and positive and for λ small and 
negative, and comment on what perturbation theory has told you in each 
case, and in each case comment on whether you think that perturbation 
theory has given a good approximation to the true ground state energy. 

5.	 Polarizability of a Particle on a Ring; the Ethane Molecule (15 points) 

Consider a particle of mass m constrained to move in the xy­plane on a circular 
ring of radius a. The only variable of the system is the azimuthal angle, which I 
will call φ. The state of the system is described by a wave function ψ(φ) which 
must have the property that 

ψ(φ + 2π) = ψ(φ) 

and which must be normalized: � 2π 
ψ(φ)|2dφ = 1 . 

0	
|

(a) The kinetic energy of the particle can be written: 

L2 
zH0 =	 (2) 

2ma2


where Lz = −i¯
hd/dφ. Calculate the eigenvalues and eigenfunctions of H0 . 
Which of the energy levels are degenerate? 

(b) Now assume that the particle has a charge	 q and that it is placed in a 
uniform electric field ε in the x­direction. We must therefore add to the 
Hamiltonian the perturbation 

H � = −qεa cos φ 

Calculate the new wave function of the ground state to first order in ε. Use 
this wave function to evaluate the induced electric dipole moment in the 
x­direction: qx ψ�. Determine the proportionality constant between �ψ| |
the dipole moment and the applied field ε. This proportionality constant 
is called the “polarizability” of the system. 
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(c) Now	 consider the ethane molecule CH3 —CH3. I am assuming that in 
some chemistry class you have seen a “balls­on­sticks” description of this 
molecule. Let us think about how to analyze the rotation of one CH3 

group relative to the other, about the straight line joining the two carbon 
atoms. 

To a zeroth approximation, this rotation is free, and the Hamiltonian H0 

of (2) describes the rotational kinetic energy. (The constant 2ma2 must be 
replaced by some new constant times the moment of inertia of a CH3 group 
with respect to the rotational axis. We’ll just keep calling the constant 
2ma2, though.) 

The H � of part (b) is not present in part (c).


We now take the electrostatic interaction energy between the two CH3


groups into account as a perturbation. We add to H0 a term of the form


H � = b cos 3φ , 

where b is a real constant. By appealing to your chemistry class balls­on­
sticks picture, give a justification for the φ dependence of H �. Calculate 
the energy and wave function of the new ground state (to first order in b 
for the wave function and to second order for the energy). Give a physical 
interpretation of the result. 
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