
Quantum Physics III (8.06) Spring 2005 
Assignment 3 

Feb 15, 2005	 Due WEDNESDAY Feb 23, 2005, 6pm 

Readings 
The current reading assignment is: 

•	 Griffiths Section 10.2.4 is an excellent treatment of the Aharonov­Bohm effect, 
but ignore the connection to Berry’s phase for now. We will come back to this 
later. 

•	 Cohen­Tannoudji Ch. VI Complement E 

•	 Those of you reading Sakurai should read pp. 130­139. 

Problem Set 3 

1.	 Gauge Invariance and the Schrödinger Equation (15 points) 

Recall that if 

A�(�x, t) = � x, t)− �� A(� �f(�x, t) 

1 ∂f 
φ�(�x, t) = φ(�x, t) + (�x, t) ,	 (1) 

c ∂t

then ( � A, φ) describe the same � �A�, φ�) and ( �	 E and B. 

(a) Write the Schr¨	 odinger odinger equation in the “unprimed gauge”. Write the Schr¨
equation in the “primed gauge” in terms of unprimed quantities and f . 

(b) Show that if ψ(�x, t) solves the Schrödinger equation in the “unprimed 
gauge”, then � �

iq
ψ�(�x, t) ≡ exp f(�x, t) ψ(�x, t)	 (2) − 

hc¯

solves the Schr¨
odinger equation in the “primed gauge”. 

[This means that in quantum mechanics, making a gauge transformation 

from primed to unprimed gauge means replacing A, φ and ψ by �� A�, φ� and 
ψ�, respectively.] 
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(c) Show that �ψ ψ� and �ψ x ψ� are the same in the primed and unprimed | | |
gauges. This means that the identity operator and the operator x are 
“gauge invariant operators”. 

(d) Show that	 the operator p is not gauge invariant, whereas the operator 
p − qA/c is gauge invariant. [Conclusion: the “canonical momentum” p 
is not a gauge invariant operator, but the “kinetic momentum” — recall 
that p − qA/c = mv — is a gauge invariant operator.] 

(e) Show that the Hamiltonian is a gauge invariant operator. 

(f) Suppose that ψn(�x) is an eigenstate of the Hamiltonian in the unprimed 
gauge, with eigenvalue En. Assume that the gauge transformation function 
f is time­indep endent. Show that ψn(�� x) is an eigenstate of the Hamiltonian 
in the primed gauge, with the same eigenvalue En.


Note: you have just shown that the spectrum of energy levels, and the

degeneracy of each level, are the same in all gauges.


In 8.05, we said that “physical observables are matrix elements of hermitian 
operators.” We should have said: “physical observables are matrix elements of 
gauge invariant hermitian operators.” 

2. Electromagnetic Current Density in Quantum Mechanics (10 points) 

The probability flux in the Schrödinger equation can be identified as the elec­
tromagnetic current density, provided the proper attention is paid to the effects 
of the vector potential. This current density will play a role in our discussion 
of the quantum Hall effect. 

Way back in the 8.04 you derived the probability flux in quantum mechanics: 

h � 
S(�x, t) = Im ψ∗ � .�ψ 

m 

In the presence of electric and magnetic fields, the probability current is modified 
to 

h � 
S(� �ψ A (3) � x, t) = 

¯
Im 

� 
ψ∗ � q

ψ∗ψ �
m 

− 
mc 

This probability flux is conserved and when multiplied by q, the particle’s 
charge, it can be interpreted as the electromagnetic current density, �j ≡ q�S. 

(a)	 Consider a system defined by the Hamiltonian � �21 q
� A(�x, t) + qφ(�x, t).	 (4) H =

2m
p − 

c
�
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The corresponding time dependent Schrödinger equation in the presence 
of (possibly time dependent) electric and magnetic fields is: �	 �2 

h = −i¯i¯
∂ψ 1 

h�
q
A(�x, t) ψ(�x, t) + qφ(�x, t)ψ(�x, t) . (5) 

∂t 2m 
�− 

c
�

Derive the expression eq. (3) for the probability flux, using the following 
steps: 

•	 Choose to work in a gauge where � A = 0.1� · �
•	 Write down the complex conjugate of eq. (5), multiply by ψ, and 

subtract the two equations. 

•	 The resulting equation can be written in the form: 

∂ρ 
= −� S 

∂t 
� · �

Show that ρ = ψ∗ψ and that �S	 is given by eq. (3) 

(b) Assuming that ψ has units 1/l3/2 as one would expect from the normal­

ization condition, d3xψ∗ψ = 1, show that �j = qS has units of charge per 
unit area per unit time, which are the dimensions of current density. 

(c) In part (a), you assumed that � A = 0. Now show that �S has exactly the � · �
same form in any gauge, ie. show that �S is gauge invariant. That is, show 
that if we make the following transformations, then �S � defined in terms of 
A� and ψ� is identical to ��	 S defined in terms of A and ψ. 

�	 x, t) = � x, t)− �A�(� A(� �f(�x, t) 
iq

ψ�(�x, t) = exp 
¯
f(�x, t) ψ(�x, t)−

hc 

where f is any function of �x and t. 

1Note: it is always possible to find a gauge transformation that takes a given vector potential � x)A(�
and turns it into one with � A = 0. (Optional: show this.) Note that stating that � A = 0 does not �· �	 �· �
fully specify �	 B = (0, 0, B0) can be described by �A. For example, the magnetic field �	 A = (−B0y, 0, 0) 
or A = (0, B0x, 0), both of which satisfy � A = 0.� · �
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3. Translation Invariance in a Uniform Magnetic Field (20 points) 

One of the surprising things in our analysis of the quantum mechanics of a 
particle in a uniform magnetic field is that even though B is uniform, and we 
would therefore expect translation invariance in the xy­plane, we find that, in 
any gauge we choose, the Hamiltonian does not appear to reflect this symmetry. 
This issue is explored in depth in the supplementary notes. In this problem, 
you explore it in a different gauge, and in a somewhat different way. 

The resolution to this question is that translation operators which do commute 
with the Hamiltonian can be constructed. We shall see, however, that there is 
a catch. 

Consider a magnetic field B = (0, 0,−B0) and work in the gauge in which 

A = (B0y, 0, 0). The time­independent Schr¨� odinger equation (for states in the 
xy­plane) is �2 

⎤⎡ � 
h2 ∂2ψ ∂ iqB0−¯ ⎣ y ψ⎦ = Eψ , (6) 

¯2m ∂y2 
+ 

∂x 
− 

hc 

and the Hamiltonian is � � �2
� 

1 2 qB0
H = py + px − y . (7) 

2m c 

(a) The appearance of y destroys (on the face of it) invariance under transla­
tion in the y direction. Show, however, that if ψ(x, y) is a solution of (6), 
then so too is ψ̃(x, y) defined by 

ψ̃(x, y) = ψ(x, y − b) exp(iqB0bx/h̄c) . (8) 

[Hint: be careful with your notation. Express (∂/∂x − iqB0y/h̄c)ψ̃ at the 
point (x, y) in terms of ψ and ∂ψ/∂x at the point (x, y − b).] 

(b) Consider the operator Vb which I define by telling you how it acts on any 
state |ψ�: 

Vb ψ� = ψ̃� . (9) | | 

This operator clearly has the effect of translating in y by a distance b. 
Show that Vb is unitary, and show that it commutes with the Hamiltonian 
H. [Hint: this part of the problem is easy.] 

(c) In parts (c) and (d), I ask you to find an explicit expression for Vb. You 
do not actually need this explicit expression for part (e), but having an 
explicit expression may make you feel more comfortable with Vb. Find an 
operator Q which commutes with H and generates translations in y. That 
is, you must find an operator which obeys [Q,H] = 0 and [y,Q] = ih̄. 
[Hint: Q should be a linear combination of the py and x operators.] 

4 



� 

(d) Show that Vb = exp(−ibQ/h̄). That is, show that this explicit expression 
for Vb yields Vb ψ� = ψ̃�.| | 

(e) In the gauge in which we are working, x does not appear in the Hamilto­
nian. The translation operator for translation in the x­direction is therefore 
the standard one. Call the operator which translates by a in the x­direction 
Ua. That is, 

�x, y Ua ψ� = �x − a, y ψ� . (10) | | |

[The explicit expression for Ua is just Ua = exp(−iapx/h̄) but, again, 
you will not need this explicit expression.] You now have two translation 
operators, Ua and Vb, both of which commute with H for any values of a 
and b you like. So, what’s the catch? 

Calculate �x, y UaVb ψ� and �x, y VbUa ψ� and show that Ua commutes with | | | |
hc/qB0 and hence if Vb if and only if ab is an integer multiple of AB = 2π¯

and only if abB0 is an integer multiple of Φ0 = hc/q. 

4. Counting the States in a Landau Level (15 points) 

Consider a charged particle in a magnetic field as in the previous problem. Work 
in the gauge chosen in the previous problem. The particle is restricted to move 
in a rectangular region of the xy­plane whose extent is 0 < x < a and 0 < y < b. 

From the result of the previous problem, if we choose a and b so that abB0 = 
NΦ0, with N some large positive integer, then we should be able to find states 
ψ� which are simultaneous eigenstates of H, Ua and Vb. In this problem we |
shall count all the states in the lowest Landau level by counting how many states 
ψ� there are which satisfy H ψ� = ELLL ψ� and Ua ψ� = ψ� and Vb ψ� = ψ�.| | | | | | |

¯Here, ELLL = heB0/2mc is the energy of the lowest Landau level. 

[Completely optional: In general, the eigenvalues of unitary operators are com­
plex numbers of modulus one. You could therefore be wondering why the eigen­
values of Ua and Vb must be 1. If you wish, after you complete this problem 
you can go back and analyze what would have changed if we had required that 
the eigenvalues of Ua and Vb were exp(iθU) and exp(iθV ) for real but nonzero θU 

and θV . You will discover that the only change is in the nature of the bound­
ary conditions satisfied by the wave function. As to the choices we have made, 
θU = 0 corresponds to choosing periodic boundary conditions in the x­direction, 
whereas θV = 0 corresponds to a different, particular, boundary condition in 
the y­direction.] 

(a) Show that if Ua ψ� = ψ�, Vb ψ� = ψ�, and ψ(x, y) satisfies periodic bound­| | | |
ary conditions in the x­direction, then ψ(x, y) must be of the form 

∞
ψ(x, y) = un(y) exp(i2πnx/a) (11) 

n=−∞ 
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with un+N(y) = un(y − b). [Aside: the eigenstates I used when I counted 
states in lecture were eigenstates of Ua but not of Vb. The eigenstates (11) 
will turn out to be linear combinations of those I used in lecture.] 

(b) Use the Schr¨ | odinger odinger equation H|ψ� = ELLL ψ� (that is, the Schr¨
equation (6)) to show that 

un(y) = cnf(y + nb/N) (12) 

where the function f(y) is the solution to the time­independent Schrödinger 
equation for a particle in the lowest energy state of a simple harmonic 
oscillator with frequency ω = eB0/mc. 

(c) It might seem that you have found infinitely many solutions. ψ is specified 
by an infinite set of constants cn. If these constants can be chosen arbitrar­
ily, then there would indeed be infinitely many linearly independent wave 
functions satisfying all the conditions. However, show that (a) and (b) 
imply that cn+N = cn. [Hint: don’t forget that abB0 = NΦ0.] This means 
that only N of the cn’s are independent. You have thus shown that there 
are are exactly N states satisfying all the conditions. Thus, in a system 
with area NAB the lowest Landau level contains N states. 

[Optional: To complete the argument, you must check that you can find N states 
which are orthogonal. To do this, construct N states as follows: for each state, 
choose one out of c0 . . . cN−1 to be 1, and the others to be zero. For example, 
the first of these states has . . . c−2N = c−N = c0 = cN = c2N . . . = 1 and all 
other c’s zero. The second has . . . c−2N+1 = c−N+1 = c1 = cN+1 = c2N+1 . . . = 1 
and all other c’s zero. Etc. What you have shown above is that any state in 
the lowest landau level is a linear combination of these N states. All you have 
to do now is show that these N states are orthogonal. That is easy to do.] 
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