
Quantum Physics III (8.06) Spring 2005

Assignment 2


Feb 8, 2005	 Due Tuesday Feb 15, 2005, 6pm 

Readings 
The readings assigned last week should suffice for all of this problem set except 

Problem 4. 

The reading assignment for the next two weeks is: 

•	 Griffiths Section 10.2.4 is an excellent treatment of the Aharonov­Bohm effect, 
but ignore the connection to Berry’s phase for now. We will come back to this 
later. 

•	 Quite remarkably, given its length, Cohen­Tannoudji never mentions the Aharonov­
Bohm effect. It does have a nice treatment of Landau levels, however, in Ch. 
VI Complement E 

•	 Those of you reading Sakurai should read pp. 130­139. 

Problem Set 2 

1.	 Fermi energy, velocity and temperature of copper (4 points) 

Do Griffiths, Problem 5.16. [Unless otherwise noted, Griffiths page and problem 
numbers refer to the 2nd Edition, the one with the blue cover. If some of you 
are using Griffiths’ 1st Edition, with a black cover, in that edition this problem 
is Problem 5.13.] 
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potential v(x). One, which we shall call ψL(x) describes a plane wave incident 
from the left: 

ψL(x) = exp(ikx) + r exp(−ikx) , x ≤ −a/2 

= t exp(ikx) , x ≥ a/2 , (1) 

where k is related to E by E = h̄2k2/2m. We shall not need the form of ψ where 
the potential is nonzero. The other solution with the same energy describes a 
wave incident from the right: 

ψR(x) = t exp(−ikx) , x ≤ −a/2 

= exp(−ikx) + r exp(ikx) , x ≥ a/2 , (2) 

with the same reflection coefficient r and transmission coefficient t as in (1) 
because v(x) is even. 

We can write the complex number t in terms of its magnitude and phase as 

t = |t| exp(iδ) , (3) 

where δ is a real number known as the phase shift since it specifies the phase of 
the transmitted wave relative to the incident one. Conservation of probability 
requires that 

2t + |r|2 = 1. (4) | |

To this point, we have reviewed 8.04 material and established notation. 

(a) Let ψ1 and ψ2 be any two solutions of the Schrödinger equation 

h2 d2¯
ψi + vψi = Eψi−

2m dx2 

with the same energy. Define the “Wronskian” of these two solutions by 

d d 
W (ψ1, ψ2) = ψ2(x) ψ1(x) − ψ1(x) ψ2(x) . 

dx dx 

Prove that W is independent of x by showing that dW/dx = 0. 

(b) By evaluating W (ψL, ψ∗ 
R), prove that rt∗ is pure imaginary, so r must have 

the form 
r = ±i|r| exp(iδ) (5) 

where δ is the same as in (3). 
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(c) Now, we begin our analysis of solutions of the Schrödinger equation in the 
periodic potential U . Since U = v in the region −a/2 ≤ x ≤ a/2, in that 
region any solution to the Schrödinger equation with potential U must take 
the form 

ψ(x) = AψL(x) + BψR(x) , −a/2 ≤ x ≤ a/2 , (6) 

with ψL and ψR given by (1) and (2). Bloch’s theorem tells us that 

ψ(x + a) = exp(iKa)ψ(x) 

and, with ψ� ≡ dψ/dx, 

ψ�(x + a) = exp(iKa)ψ�(x) . 

By imposing these conditions at x = −a/2, show that the energy of the 
electron is related to K by 

1 
cos Ka = 

t2 − r2 

exp(ika) + exp(−ika) . (7) 
2t 2t 

[Recall that k specifies the energy via E = h̄2k2/2m. Note that you do not 
need to use (3), (4) or (5) to derive (7). Note also that some of you may 
succeed in deriving an expression relating all the quantities in (7) — and 
no other quantities — but then not succeed in reducing your expression to 
the form (7). If so, you will not lose many points. And, make sure to use 
(7), rather than whatever you obtain, in the following parts.] 

(d) Show that as a consequence of (4), (5) and (7) the energy and K of the 
Bloch electron are related by 

cos(ka + δ) 
cos Ka = . (8) 

t| | 

Note that |t| is always less than one, and becomes closer and closer to 
one for larger and larger k because at high incident energies, the barrier 
becomes increasingly less effective. Because |t| < 1, at values of k in the 
neighborhood of those satisfying ka + δ = nπ, with n an integer, the right 
hand side of (8) is greater than one, and no solution can be found. The 
regions of E corresponding to these regions of k are the energy gaps. 

(e) Suppose the barrier is very strong, so that |t| ≈ 0, r ≈ 1. Show that | |
the allowed bands of energies are then very narrow, with widths of order 
t . [Note: this is the tight­binding case, discussed in lecture. This is the | |
case that applies to a deeply bound atomic energy level which in a crystal 
becomes a narrow band. In this case, because the energy level is well below 
the top of the barrier between single­atom potential wells, “transmission” 
requires tunnelling, meaning that |t| is small.] 
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(f) Suppose the barrier is very weak (so that t ≈ 1, r ≈ 0, δ ≈ 0). Show | | | |
that the energy gaps are then very narrow, the width of the gap containing 
k = nπ/a being 2πnh̄2|r|/ma2 . [Note: this shows that the continuum 
states – namely those whose energies are above the top of the barriers – 
are also separated into bands. The gaps between the bands get narrower 
and narrower for higher and higher energy continuum states.] 

(g) Show that in the special case where v(x) = +αδ(x) where δ(x) is the Dirac 
delta function — ie the Kronig Penney model as in Griffiths’ problem 5.17 
— the phase shift and transmission coefficent are given by 

h2¯ k 
cot δ = − 

mα 

and

t = cos δ
| | 

and that (8) becomes the expression derived in Griffiths. 
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4.	 An Operator Ordering Ambiguity (6 points) 

ˆ 2 2Evaluate [x2 , p̂2]. Now, evaluate the Poisson bracket {x , p }PB from classical 
mechanics. Show that the rules of canonical quantization and the requirement 

ˆthat i[x2 , p̂2] must be a Hermitian operator are sufficient to correctly guess the 
2ˆ 2result for [x2 , p̂ ] from the result for {x2, p }PB. Now, repeat this exercise for 

3 3	 ˆ 3ˆ 3[x3 , p̂ ] and {x , p }PB. Show that in this case, the requirement that i[x3 , p̂ ] be 
Hermitian is NOT sufficient to allow one to guess the correct quantum mechan­
ical result from the classical result. 

5. Landau Levels: a Prelude (6 points) 

When we analyze the problem of a charged particle in a magnetic field, we shall 
find that the energy eigenvalues are separated by a spacing h̄ωL, where ωL (the 
Larmor or cyclotron frequency) is proportional to the magnetic field B and is 
given by 

eB 
ωL = , 

mc

with m the mass of the electron.


Furthermore, we shall find that the length


h̄ 
�0 = 

mωL 

and the area

AB = 2π�2


0 

play an important role. 

(a) Suppose B is a field of 10 Tesla. (This is a very strong magnetic field but 
is certainly one which can be created in the laboratory. I am actually not 
sure what the strongest laboratory magnetic fields achieved to date are, 
but I believe they are less than 100 Tesla.) In a 10 Tesla magnetic field, 
what is h̄ωL in eV? What is �0 in natural units? What is �0 in cm? 

(b) Lets see whether we can get some sense of how the area AB may arise in 
this problem. In a magnetic field of strength B, the flux Φ through an 
area A perpendicular to B is Φ = BA. What is the flux through the area 
AB? Express your answer in units of hc/e. (Note: hc/e, not h̄c/e.) 

Useful facts: 1 Tesla = 104 gauss. The gauss is the cgs unit of B. This 
turns out to mean that if B is 1 gauss, then the force eB is 300 eV/cm. Also, 
h̄c = 197 × 10−7eV cm. And, the mass of the electron is m = 0.511MeV/c2 . 
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