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Quantum Physics III (8.06) Spring 2005

Assignment 10


April 29, 2005 Due FRIDAY May 6, 2005 

Readings 
Read Cohen­Tannoudji, Chapter VIII, Griffiths Chapter 11, Ohanian Chapter 11 . 

Read Griffiths Chapter 9 on Time Dependent Perturbation Theory. 

Problem Set 10 

The seven problems are required problem set, due on Friday, May 6. 

1. Scattering from a Small Crystal (8 points) 

We want to investigate the structure of a crystal by scattering particles from it. 
The particle sees the potential 

V (�x) = v(� Xi) 
i 

x − �

where the Xi are the position vectors of the scattering atoms and v(�x) is the 
scattering potential of a single atom. Assume that v is weak enough that we 
can use the Born approximation for the whole crystal, ie for V . 

(a) Express the differential cross section as the product of two factors, one of 
which depends on v and the other on the structure of the crystal, ie the 

Xi. Both factors will depend on the momentum transfer �set of points � q. 
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(b) Briefly, compare to whatever you know about Bragg scattering. 

2.	 Partial Waves (10 points) 

Suppose the scattering amplitude for a certain reaction is given by 

Γk 
f (θ) =

1	
+ 3e 2iβk3 

sin 2βk3 cos θ (1) 
k k0 − k − ikΓ 

where Γ, k0, and β are constants characteristic of the potential which produces 
the scattering. Of course k = 2mE/�2 is the deBroglie wavenumber. 

•	 What partial waves are active (i.e. what values of �)? 

•	 What are the phase shifts in the active partial waves? Do they have the 
proper behavior as k 0?→ 

•	 What is the differential cross section, dσ/dΩ for general values of k? 

•	 What are the partial wave cross sections, σ�? 

•	 Assume βk3 � 1. Give an approximation to the total cross section σ(k)0 

for k ≈ k0. 

•	 What is the total cross section for general values of k? What is the imagi­
nary part of the forward scattering amplitude? Do they satisfy the optical 
theorem? 

3.	 Combining Born and Partial Waves (6 points) 

A potential V (r) is of the Yukawa form, 

VYukawa(r) = β 
exp(−µr) 

r 

for r > R, but is unknown for r < R. The differential cross­section dσ/dΩ has 
been measured as a function of energy (= �2k2/2m) and angle, for values of 
k up to and of the order of 1/R. Attempts to fit dσ/dΩ to the partial wave 
formulae using a small number of phase shifts δ�(k) (i.e. putting δ� = 0 for all 
�’s greater than some �0) have been a miserable failure. [Aside: this is what 
actually happened when the scattering of neutrons off protons was first done 
at energies up to about 100 MeV. The fits to a straightforward partial wave 
analysis of the type just described were hopelessly ambiguous.] 

It is proposed that though the higher phase shifts are all small, their sum cannot 
be neglected. This is annoying, because we do not want to use the partial wave 
analysis for infinitely many values of �. In order to make progress, we make the 
following assumptions: 
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•	 Because of the centrifugal potential �2�(�+1)/2mr2, once � is “big enough” 
the behavior of V (r) for r < R does not matter, and we can therefore 
calculate the behavior of δ� for large � just from VYukawa(r). 

•	 These δ� can be expanded in powers of β and we can keep only the first 
term. That is, each of these δ�’s is small, so we can expand it. It is the 
sum of all of them which is causing problems. 

Carry out the following procedure to implement this idea, treating � ≥ 1 as “big 
enough” in the sense above. 

(a) Write the Born approximation for the scattering amplitude	 fYukawa(θ, φ) 
for the potential VYukawa. You can get this from Problem Set 9, so this 
part of the problem is worth no points. 

(b) Calculate the mean value of fYukawa at fixed k, averaging over all directions 
(θ, φ), and subtract this mean value from fYukawa. 
[Since the s­wave scattering amplitude has nonzero mean, while all higher 
partial wave scattering amplitudes have zero mean, what you have just 
done is to subtract the s­wave part of the Born approximation to fYukawa. 
What remains is the sum of the contributions of all partial waves with 
� ≥ 1. Note that making the first Born approximation is equivalent to 
linearizing fYukawa in β. So, you have now accomplished most of what we 
set out to do.] 

(c) You must now add back in an expression for the s­wave contribution to f . 
As the s­wave is more sensitive to the small r region of the potential than 
any other partial wave, you cannot analyze it using the Yukawa potential. 
So, just add in the s­wave contribution to f written in terms of an unknown 
phase shift δ0(k). 
Write down a formula expressing dσ/dΩ in terms of m, �, k, θ, µ, β and 
δ0(k).

[To complete the story, what you now do is fit the data to your formula,

and thus obtain µ, β and δ0(k). The fit to the data now works beautifully,

and the fitted value of µ turns out to be the mass of the pion (times c/�)

just as Yukawa had predicted 20 years before.]


4.	 Scattering from a δ­Shell (13 points) 

Consider s­wave (� = 0) scattering from the potential 

�2 

V (r) = λ δ(r − R)
2mR 

with λ a large positive constant. To find the phase shift δ0 (k) we have to solve 

d2 u λ 
dr2	

+ k2 u = 
R

δ(r − R)u , 
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with u = 0 at r = 0 and u = sin(kr + δ) for r > R. 

(a) What is u in r < R? 

(b) By comparing u�(r)/u(r) just inside and just outside r = R, find a formula 
to determine δ. 

(c) Find the scattering length a, defined by limk 0 δ0 = −ka. →

(d) Assume λ � 1. Sketch δ(k). Show that for kR just below nπ, with n a 
positive integer, δ(k) increases very rapidly by π (as kR increases towards 
nπ). Sketch the s­wave cross­section σ0. Show that the s­wave scattering 
from this potential is the same as that from a hard sphere of radius R for 
all values of kR except those such that kR is close to nπ. What is the 
significance of these values? 

5. Ramsauer­Townsend Effect (6 points) 

At very low energies only the s­wave contributes to scattering. If, for some 
reason, the s­wave phase shift vanishes, then so does the scattering amplitude. 
Under these circumstances a projectile can pass through material without any 
scattering. This effect is known as the Ramsauer­Townsend Effect. 

Consider a three dimensional “square well”, 

for r ≤ a 
V (r) = 

−V0	 (2) 
0	 for r > a 

(a) Find the condition	 on γ2 = 2mV0a
2/�2 such that the cross section for 

a particle of mass m is zero at zero energy. Your answer should be in 
the form of a set of values of γ2 , specified graphically. (You need not 
obtain numerical values, but make sure that your graph is drawn accurately 
enough and labelled so that someone can use your graph to read off the 
first few numerical values to within 10%.) 

(b) As you	 can see from part (a), it is useful to think of the Ramsauer­
Townsend effect as a function of the depth of the potential. The existence 
of bound states is also a function of the depth of the potential. Show that 
if a square well which displays an exact Ramsauer­Townsend effect is made 
a little deeper or shallower (you have to figure out which) it then has a 
bound state at threshold. 

6. Scattering in the Semiclassical Approximation (4 points) 

The semiclassical approximation becomes better at high energies. For most 
problems high energies means scattering as opposed to bound states. It is quite 
straightforward to estimate the phase shift in the semiclassical approximation. 
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Consider scattering in the s­wave in three dimensions. The radial wavefunction 
obeys 

2 

and u(k, 0) = 0. 

In this problem we will assume that V (r) is smooth and slowly varying and that 
r2V (r) → 0 as r →∞ and that V (r) is negative at all r. (We’ll change the last 
assumption in the next problem.) 

Recall from 8.05 (and show for yourself if you like) that as r → ∞, u(k, r) ∼
sin(kr + δ0(k)), where δ0(k) is the phase shift. 

Show that in the semiclassical approximation 

2m 
�

2��(k, r) + V (r)u(k, r) = k (k, r)	 (3) u− u

∞ 

k2dr −

2m 
�

V (r) − k	 (4) 
2 

δ0(k) = 
0 

7. A Semiclassical Analysis of Resonant Scattering (13 points) 

Consider s­wave scattering for a particle of mass m off a potential V (r) which 
vanishes at the origin, rises steadily as r increases from zero, reaches a maximum 
at r = c, and then goes quickly to zero as r increases further. 

For � = 0, the radial wave function u(r) satisfies the same Schrödinger equation 
as that for a particle in one dimension with potential V , subject to the boundary 
condition u(0) = 0. 

Consider scattering with energy E where 0 � E � V (c). The classical turning 
points are at r = a and r = b with a < c < b. 

(a) What is the semiclassical approximation to the wave function in the clas­
sically allowed region, 0 ≤ r < a? 

(b) What is the ratio of the amplitude of the wave function u(r) in the semi­
classical approximation in the region x > b compared to that in the region 
x < a, for generic values of E? 

(c) For some special values of	 E, there is a qualitative change in the ratio 
of the amplitude for x > b to the amplitude for x < a, compared to its 
“generic” value at other energies. What condition determines these special 
values of E? 

(d) Describe	 the qualitative behavior of the s­wave phase shift and s­wave 
cross­section for energies in the vicinity of the special values of E. 
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