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1.	 Brick in a Square Well 

REMEMBER: THIS PROBLEM AND THOSE BELOW SHOULD NOT BE 
HANDED IN. THEY WILL NOT BE GRADED. THEY ARE INTENDED 
AS A STUDY GUIDE TO HELP YOU UNDERSTAND TIME DEPENDENT 
PERTURBATION THEORY AND THE GROVER ALGORITHM. 

Here is a simple enough time dependent perturbation of a simple enough system 
that everything can be computed analytically. 

Do Griffiths Problem 9.18. (Note: Problem 9.17 in 1st. Ed.) 

2.	 A Time­Dependent Two­State System 

Consider a two­state system with Hamiltonian 

+E v(t)
H(t) = 

v(t) −E 

where v(t) is real and where v → 0 for t → ±∞. 

(a) Suppose that at t = −∞ the system is in the state 1�. Use time dependent |
perturbation theory to determine the probability that at t = +∞ the 
system is in the state 2�, to lowest order in v.|

(b) If	 E = 0, the eigenstates of H(t) do not depend on t. Use this fact to 
calculate the probability of a transition from 1� to 2� exactly, in this case. | |
What is the result obtained from time­dependent perturbation theory in 
this case? What is the condition that the perturbative result is a good 
approximation to the exact result? 

3. Excitation of a hydrogen atom 

A hydrogen atom is placed in an electric field �E(t) that is uniform and has the 
time dependence, 

E(t) = 0	 t < 0 

= E0e
−γt	 t > 0 (5) 

What is the probability that as t → ∞, the hydrogen atom, initially in the 
ground state, makes a transition to the 2p state? 
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4. Decay of the three dimensional harmonic oscillator 

The object of this problem is to calculate the lifetime of a charged particle 
(charge q, mass m) in the first p­state of the three dimensional harmonic oscil­
lator (frequency ω). 

a) Write down an expression for the transition rate per unit time, Γ(2p → 1s), 
for the particle to spontaneously emit electromagnetic radiation and make 
a transition to the ground state. Γ should depend on the frequency of the 
emitted light and on the matrix element of the operator q�r. 

Note that the 2p state is three­fold degenerate: it has � = 1 and can have 
m� = −1, 0, 1. 

b) Show that the transition rate is independent of m�. 

c) Finally, give a formula for Γ(2p → 1s) in terms of m, ω, q, and fundamental 
constants. 

d) What is the relationship between the transition rate per unit time and the 
“lifetime” of the 2p state? 

5. Lifetime of Excited States of Hydrogen 

(a) Do Griffiths Problem 9.11.	 (Problem 9.10 in 1st. Ed.) NOTE: You may 
use any results from Griffiths’ section 9.3.3 without proving them (even 
though Problem 9.10 comes before section 9.3.3). Using results from 9.3.3 
without proving them turns this into a much easier problem. 

(b) Do Griffiths Problem 9.14, part (a) only. (Problem 9.13(a) in 1st. Ed.) 

6. A wave front crossing a bound particle 

Consider a particle in one dimension moving under the influence of some time­
independent potential, V (x). Assume that you know the energy levels and 
corresponding eigenfunctions for this problem. We now subject the particle to 
a traveling pulse represented by a space­ and time­dependent potential, 

V (t) = aδ(x − ct) 

where δ(x) is a Dirac δ­function. 

(a) Suppose as t → −∞ the particle is known to be in the ground state whose 
wavefunction is �x i� = ui(x). Find the probability for finding the system |
in some excited state, with wavefunction �x f � = uf (x) as t →∞.|
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(b) (Note:	 you can skip part (b) and still do part (c). You may have to do 
this, depending on exactly what I am able to cover in lecture.) Reinter­
pret your result in part (a) as follows. Regard the δ­function pulse as a 
superposition of harmonic perturbations, by recalling that the δ function 
can be represented as a superposition of exponentials: 

1 ∞ 

δ(x− ct) = dωe iω(x/c−t).	 (6) 
2πc −∞ 

Show that if you treat each frequency component of the δ function sep­
arately, using for each the result we obtained in lecture for a harmonic 
perturbation (namely that there is a transition if and only if ω = ωf i 

and the amplitude of that transition is the matrix element of the operator 
coefficient of the harmonic time dependence between the initial and final 
states) then you get the same result as in part (a). 
The lesson is that the analysis we did in lecture with a harmonic time 
dependence can be applied to very different dime dependences via Fourier 
transformation. 

(c) Apply the result of part (a) to the one dimensional (infinite) square well, 

V (x) = 0 for 0 < x < d, 

= for x < 0 or x > d (7) ∞ 

Express the probability to transition from the ground state to the first 
excited state as a function of the dimensionless parameters α = a and�c 

dΔEβ = 
2π�c , where ΔE = 3π2�2 

2md2 . Show that the transition probability has a 
maximum for β ≈ 1. Explain this in terms of the time it takes light to 
cross the potential well and the natural timescale of the quantum system. 

7 . The Grover Algorithm 

Consider the 8 dimensional Hilbert space formed by taking the tensor product 
of the Hilbert spaces for three spin­one­half particles. 

We denote the basis states as follows: 

=	 0, 0, 0�|0� |
=	 0, 0, 1�|1� |
=	 0, 1, 0�|2� |
=	 0, 1, 1�|3� |
=	 1, 0, 0�|4� |
=	 1, 0, 1�|5� |
=	 1, 1, 0�|6� |
=	 1, 1, 1�|7� |
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where, for example, 0, 1, 0� means a state in which all three spins are in eigen­|
states of Sz , with eigenvalues +�/2, −�/2, +�/2. 

Throughout this problem you will be constructing a variety of 8 × 8 matrices, 
working in a basis with basis vectors ordered as above. 

(a) The first stage of the Grover algorithm is initialization. Suppose we start 
with all spins up, namely in state 0�. We want to find a unitary operator |
Uinitialize such that


Uinitialize 0� =
| |s�


where the state s� is given by


1 
.s� = 0� + 1� + 2� + 3� + 4� + 5� + 6� +| √

8 
| | | | | | | |7� 

Construct the 8 × 8 matrix Uinitialize as the product of three 8 × 8 unitary 
matrices each of which acts only within the Hilbert space of one of the 
three spins. 

Note: my guess is that this is the part of this problem that you will find 
trickiest. Note that you need not do this part of the problem in order to 
do any of the other parts. 

(b) Lets suppose that f (3) = 1 and f (a) = 0 for a = 0, 1, 2, 4, 5, 6, 7. In other 
words, “3 is the winner”. Define a diagonal unitary matrix called (−1)f 

that acts on basis states as follows: 

(−1)f = a� for a = 3 |a� | �
(−1)f =|3� −|3� . 

Write (−1)f as an 8 × 8 matrix. 

Note: this part of the problem is very easy as posed. Too easy, in fact. 
Doing it this way is a little too much like “looking inside the black box and 
seeing how f works”. What you should really do is construct this unitary 
operator by introducing a “work­bit”, introducing an operator Uf which 
represents a function call via Uf a, 0� = a, f (a)� and Uf a, 1� = a, 1 −| | | |
f (a)�, introducing the operator L defined in lecture, and then constructing 
(−1)f = Uf LUf . I do recommend that you do this explicitly, but adding 
the work bit means doubling the Hilbert space to 16 × 16 so I am not going 
to ask you to turn this in. 

(c) Write the unitary operator Us ≡ 2|s��s|−1 as an 8×8 matrix. (You should 
check that your matrix is unitary, but do not turn this check in.) 
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(d) Find the state � �k 

Us (−1)f |s� 

for k = 0, 1, 2, 3. You should find that for k = 2, it is fairly close to the 
state 3� while for k = 3, it has become less close to 3�.| |
Suppose that the state with k = 2 “is measured”, meaning that Sz is 
measured for each of the three spins. What is the probability that the 
outcome of this measurement will be +�, −�, −� (which corresponds to 
the state 3�)? That is, what is the probability that upon measurement |
you get the right answer?


Note: I proved in lecture that for large N , the best choice for k is the integer

closest to π

√
N/4. For our N = 8, which is not even very large, π

√
N/4 =


2.22. Now that you have understood the N = 8 example explicitly, you 
should review the proof of the large­N result. [Note: although it is not 
really necessary, it is fine if you choose to use a program like Mathematica 
to multiply out matrices.] 
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