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PROFESSOR: All right. So, we'll get started. And as I mentioned, to some degree this is going to

be review on the setting of our notation and conventions clear.

So, our first topic is the Schrodinger equation. So this Schrodinger equation is an

equation that takes the following form. I h bar partial derivative of this object called

the wave function that depends on x and t is equal to minus h squared over 2m

second derivative with respect to x plus v of x and t Psi of x and t. And that's the full

equation. That's the Schrodinger equation.

Now actually, this is not the Schrodinger equation in most generality, but it's the

Schrodinger equation for the case that you have a potential that depends on x and

t. For the case that we are doing non-relativistic physics, because this thing you

may remember is p squared over 2m is the kinetic energy operator. So p squared

over 2m is non-relativistic. That's a non-relativistic kinetic energy. So this is non-

relativistic. Moreover, we have just one x here. That means it's a particle in one

dimension.

So we've done a few things, but this is generally enough to illustrate our ideas. And

the most important thing that should be said at this point is that Psi of x and t--

which is the wave function-- belongs to the complex numbers.

It's a complex number. And that's by necessity. If Psi would be real, this quantity--

the right hand side-- would be real. The potential is a real number. On the left hand

side, on the other hand, if Psi is real, its derivative would be real, and this would be

imaginary. So, it's just impossible to get the solution of this equation if Psi is real. So,

Psi complex is really the fundamental thing that can be said about this wave

function.
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Now, you've used complex numbers in physics all the time, and even in

electromagnetism, you use complex numbers. But you use them really in an

auxiliary way only. You didn't use them in an absolutely necessary way.

So, for example. In E&M, you had an electric field, for example, for a circularly

polarized wave. And you would write it as this. Let me put the z here. Zero. X hat

plus y hat-- those are unit vectors. I is a complex number. It's the square root of

minus 1. E to the IKZ minus omega t. You typically wrote things like that, but, in fact,

you always meant real part.

An electric field is a real quantity. And the Maxwell's equations are real equations.

This is a circularly polarized wave. And this whole thing-- by the time you take the

real part of this, all these complex numbers play absolutely no role. It's just a neat

way of writing a complicated electric field in which the x component and the y

component are out of phase, and that you have a wave at the same time

propagating in the z direction. So this-- in the here, E is real, and all i's are auxiliary.

This is completely different from the case of the Schrodinger equation. This i there

is fundamental. The Psi is the dynamical variable, and it has to be complex.

So, we make a few remarks about the Schrodinger equation to get started. First

remark is that this is first order differential equation in time. This has implications.

Those two derivatives are maybe-- for some funny Hamiltonians, you can have

even more than two derivatives or more complicated things. But definitely there's

just one derivative in time.

So, what this means is that if you know the wave function all over space, you can

calculate what it's going to be a little time later. Because if you know it all over

space, you can calculate this right hand side and know what is the time derivative.

And with the time derivative, you can figure it out what it's going to be later. A first

order differential equation in time is something that if you know the quantity at one

time, the differential equation tells you what it's going to be later. So, that's really

sufficient. Psi of x-- of all x's-- at some time t naught determines Psi at all times.

Second property, fundamental property. The equation is linear. So, if you have two
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solutions, you can form a third by superimposing them, and you can superimpose

them with complex coefficients. So, if you have two solutions, Psi 1 and Psi 2, then a

1 Psi 1 plus A2 Psi 2 is a solution. And here the a's belong to the complex numbers.

So A 1 and A 2 are complex numbers.

As far as complex numbers are concerned, the first thing you just need to know is

the definition of the length of a complex number. So, if you have z, a typical name

people use for a complex number, having two components. A plus ib, where a and b

are real.

There's the definition of the complex conjugate, which is a minus ib, and there's the

definition of the length of the complex number, which is square root of a squared

plus b squared, which is the square root of z times z star. So, that's for your

complex number.

So, the property that this makes this into a physical theory and goes beyond math is

what you know is the interpretation of the wave function as a probability. So, what

do we construct? We construct p of x and t, or sometimes called the row of x and t

as a density. And it's defined as Psi star of x t.

Now, here the notation means this Psi star-- we'd put the star here-- it really means

Psi of x and t complex conjugate. You complex conjugate the wave function. And

you get that. We'd put the star here, and typically don't put the parentheses, unless

you have to complex conjugate something that's a little ambiguous.

So, Psi star of x and t times Psi of x and t. And this is called the probability density.

Probability density. And the interpretation is that if you take p of x and t and multiply

by little dx, this is the probability to find the particle in the interval x comma x plus dx

at time t.

So, this is our probability density. It's a way to make physics out of the wave

function. It's a postulate. And so the consequence of this postulate, since we're

describing just one particle, is that we must have the particle as somewhere. So, if

we add the probabilities that the particle is somewhere all over space, this is the
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probability that the particle is in this little dx we integrated that must be equal to 1.

And this must hold for all times.

In terms of things to notice here, maybe one thing you can notice is the units of Psi.

The units of Psi must be 1 over square root of length, because when we square it,

then we multiply it by length, we get one, which has no units.

Key property of the Schrodinger equation. We will revisit the Schrodinger equation

later and derive it, sort of the way [? De ?] [? Rack ?] derives it in his textbook. As

just a consequence of unitary time evolution, it would be a very neat derivation. It

will give you a feeling that you really understand something deep about quantum

mechanics. And it will be true, that feeling. But here, we're going to go the other way

around.

Just simply ask the question-- suppose you have a wave function such that the

integral of this quantity at some specific time is equal to one. Will this integral be

equal to one for all times, given that it is one at some given time? Now, you say,

well, why do you ask that?

I ask that because actually this could be a problem. We've said that if you know the

wave function all over space at one time, it's determined everywhere. So any time

later. Therefore, if I know the wave function at time equal zero is good-- time equal t

zero-- is a good wave function, I might warranty that when I saw the Schrodinger

equation, the wave function will be normalized, well, later? Yes, you are.

And it's a simple or interesting exercise that we'll call it the quick calculation that I'll

leave it for you to do. Which is show that d dt of this integral Psi of x and t squared

dx is equal to zero. So, basically what this is saying. You got one but, think of this

integral-- I'm sorry, I'm missing a dx here-- think of this integral for all times. Now it

could be a function of time, because you put an arbitrary time here. The integral

might depend on time.

So, it's a good question to think of that integral that may be a function of time and

take its derivative. If its derivative is zero for all times, and that sometimes equal to
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one, it will be one forever. So, you must show that this is true. Now, this I think

you've done one way or another several ways maybe in 804. But I ask you to do it

again. So this is left for you as a way to warm up on this object.

And you will see actually that it's a little subtle. It's a little delicate, because how is it

going to go? You're going to go in and take the derivative of Psi Psi star. You're

going to take the derivative of Psi and you're going to use the Schrodinger equation.

You're going to take the derivative of Psi star, and you're going to use the complex

conjugate of the Schrodinger equation. It's going to be a little messy.

But then you're going to do integration by parts, and you're going to get zero, but

only if you throw away the terms at infinity. And what gives you the right to throw

them away? You will have to think. And the answer is that you will throw them away

if the wave function goes to zero at infinity, which must do it. The wave function

must go to zero at infinity, because if it didn't go to zero at infinity, it went to a

constant at infinity, it would pick up an un-normalizable thing here. So the wave

function definitely has to go to zero at infinity.

But that will also not be quite enough if you're careful about what you're doing. You

will have to demand that the derivative of the wave function doesn't blow up. It's not

asking too much, but it's asking something. A function could go to zero, presumably,

and its derivative at the same time blow up, but it would be a very pathological

function.

This will bring us to something that we said. We're going to try to be precise, but it's

not so easy to be precise. When you try to be precise, you can exaggerate and go

precise to a point that you're paralyzed with fear with every equation. We don't want

to get that far. We want you to notice what happens and just look at it and state

what you need.

Why can't we be precise? Because at the end of the day, this equation is

extraordinarily complicated, and maybe crazy. The potential is crazy enough. So,

functions-- mathematicians can invent crazy functions, things like a function that is

one for every rational number and zero for every rational number. Put that for a
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potential here, and who knows what one gets.

So, we're going to take mild functions. We're not going to make them a very

complicated, and we're going to be stating very soon what we need. So, what you

need for this to work is that the function goes to zero and the relative goes to zero.

Yes.

AUDIENCE: The potential has to be real always?

PROFESSOR: The potential is real at this moment. Yes. For the discussion that we're doing here, v

is also a real number.

AUDIENCE: So it can't be complex?

PROFESSOR: Sorry?

AUDIENCE: Can it be complex?

PROFESSOR: It could be in certain applications for particles in electromagnetic fields. You can

have something that looks like a complex Hamiltonian. So we will not discuss that in

this couple of lectures, but maybe later. Yes.

AUDIENCE: Are there any conditions that the potential has to be time-dependent?

PROFESSOR: Well, at this moment, I put it time dependent. Also, it complicated potentials, but

they're sometimes necessary. And we will discuss some of them. We will have very

simple time dependencies. Otherwise, it's difficult to solve this equation. But very

soon-- in about five minutes, I will say-- let's consider time-independent things to

review the things that are a little more basic and important and that you should

definitely remember well.

OK, so that's this part of the Schrodinger equation. I want to remind you of another

concept called the current-- probability current. Probability current. What is it? It's a j

of x and t-- that you will review in the homework-- is given by h over m, the

imaginary part of Psi star d Psi over dx. So, it's a real quantity. And it's called a

probability current. And it goes together with this probability density, this probability
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density that we wrote over here. So it's the current associated to that density.

Let's think a second what this means. In electromagnetism, you have currents and

charged densities. So in E&M, you have a current. It's a vector and a charged

density. Now, this current could also be a vector. If you're working in more than one

dimension, it would be a vector.

But if you have electromagnetism, the most famous thing associated to

electromagnetism currents and charged densities is the so-called conservation law.

This differential equations satisfied by the current and the density. Divergence of j

plus d Rho dt is equal to zero. That means charge conservation.

You may or may not remember that. If you don't, it's a good time to review it in E&M

and check on that, discuss it in recitation. Think about it.

This means charge conservation as we usually understand, and the way to do it--

I'm saying just in words-- is you think of a volume, you can see how much charge is

inside, and you see that the rate of change of the charge is proportional to the

current that is escaping the volume. Which is to say, charge is never destroyed or

created. It can escape a volume, because the charges are moving, but if it doesn't

escape, well, the charge remains the same.

So, this is charge conservation. And this is the same thing. So the divergence of j in

this case reduces to dj dx plus d Rho dt equals zero. It has a very similar

interpretation. So, perhaps in equations, it's easier to think of interpretation.

Consider the real line and the point a and b, with a less than b. And define the

probability pab of t of finding the particle in this interval between a and b at any time.

You should be able to show-- and it's again another thing to review. This you can

review.

And this review as well. You will use this differential equation, things like that, to

show that dpab dt-- the rate at which the probability that you find the particle in this

interval changes depends on what the current is doing here and what the current is

doing here. So, it's actually given by j of a and t minus j at b at time t. You can show,
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and please try to show it.

So, what does that mean? You can have the particle here at any time. But if you

want to know how the probability changing, you must see how it's leaking from a or

how it's leaking from b.

Now j's are defined, by convention, positive to the right. So, if there's a current-- a

bit of current at a, it increases the probability. This particle is sort of moving into the

interval. And here at b, there's a positive current decreases the probability. Finally,

for wave functions, the last thing we say is that these wave functions are-- you want

them normalized, but we can work with them and they're physically equivalent if

they differ just by a constant. So Psi 1 and Psi 2 are said to be equivalent if Psi 1 of

x and t is equal to some complex constant of Psi 2 of x and t.

Now, you would say, well, I don't like that. I like normalized wave functions, and you

could have a point there. But even if these are normalized functions, they could

differ by a phase. And they would still be physically equivalent.

This part of the definition of the theory-- the definition of the theory is that these

wave functions are really physically equivalent and indistinguishable. And that puts a

constraint on the way we define observables. Any observable should have this

property that, whether we used this wave function or the other, they give you the

same observables.

So, if your wave functions are normalized, this can be complex constant of length

one. Then one normalized implies the other is normalized. If they're not normalized,

you can say, look, the only reason I'm not normalizing it because I don't gain all that

much by normalizing it, in fact. I can do almost everything without normalizing the

wave function. So, why should I bother? And we'll explain that also as well very

soon. So, this is something that this part of the physical interpretation that we should

keep.

So, now we've reviewed the Schrodinger equation. Next thing we want to say is the

most important solutions of the Schrodinger equations are those energy
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Eigenstates, stationary states. And let's just go through that subject and explain

what it was. So, I'm going to start erasing here.

So we're going to look at-- whoops-- stationary solutions. Now, I've used this week

wave function with a capital Psi for a purpose, because I want to distinguish it from

another Psi that we're going to encounter very soon. So, stationary solutions. And

we'll take it-- from now assume v is time-independent. The case is sufficiently

important that we may as well do it.

So, in this case, the Schrodinger equation is written as I h bar d Psi dt, and we'll

write it with something called an h hat acting on Psi. And h hat at this point is

nothing else than minus h squared over 2m second derivative with respect to x plus

v of x.

We say that h hat is an operator acting on the wave function Psi on the right.

Operator acting on that-- what does that mean? Basically, when we say an operator

acts on some space, we mean that it takes elements of that space and moves them

around in the space.

So, you've got a wave function, which is a complex number that depends on x and t

ultimately, and then you act with this thing, which involves taking derivatives,

multiplying by v of x, and you still got some complex function of x and t. So, this is

called the Hamiltonian operator, and it's written like that. This Hamiltonian operator

is time-independent.

So, what is a stationary state? A stationary state-- the way it's defined is as follows.

A stationary state of energy e-- which is a real number-- is a Psi of x and t of the

following form. It's a simple form. It's a pure exponential in time times a function that

just depends on x. So, it's a pretty simple object.

So what is it? We say that this is a stationary state. e to the minus i Et over H bar Psi

of x. And this Psi is in purpose different from this Psi. It doesn't have the bar at the

bottom, and that signals to you that that's the time-independent one. So this also

belongs to the complex numbers, but doesn't depend on time. So, it's called
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stationary because, as it turns out, when we will compute expectation values of any

observable on this state, in this stationary state, it will be time-independent.

In particular, you know, one thing that observable is the probability density. And

when you look at that, you have Psi star and Psi. Since E is real, this phase cancels-

- this is really a face, because E is real. Therefore, Psi star Psi, the e cancels, and

all the time dependence cancels and goes away.

Same thing here for the j. The x derivative over here it doesn't do anything to that

phase. Therefore, the phase e to the i Et over H bar cancels from there two. And

the current also has no time dependence.

So, this will be the case for any operator that is called a time-independent operator.

It will have time-independent expectation values. So you can ask anything about

some familiar operator-- energy operator, momentum operator, angular momentum

operator-- all the famous operators of quantum mechanics, and it will have real

expectation values.

So, as you, you're supposed to now plug this into this equation. And it's a famous

result. Let's just do it. Plug back into the top equation. So, we have I H bar. The DET

will only act on the phase, because the Psi has no time-dependence. And on the

other hand, on the right hand side, the H has nothing to do with time, and therefore

it can slide through the exponential until it hits Psi.

So here we have H-- well, I'll put the exponential in front-- H on little Psi. So, we

multiply here, and what do we get? Well, the H bars cancel. The i at minus i gives

you one. You get that E in front. So you get E times this phase Psi of x. And the

phase is supposed to be here, but I cancel it with this phase as well. And I get on

the right hand side H Psi. I will put it as a left hand Psi. And this is the time-

independent Schrodinger equation.

So far this is really a simple matter. We've written a solution that will represent the

stationary state, but then this energy should be such that you can solve this

equation. And as you've learned before, it's something not so easy to solve that

10



equation. So what do we want to say about this equation? Well, we have a lot to

say, and a few things will be pointed out now that are very important.

So, we have a differential equation now. This differential equation has second

derivatives with respect to x. Now it has no time derivatives. The time has been

factored out. Time is not a problem anymore. This equation, in fact, looks quite real

in that it seems that Psi could even be real here. And in fact, yes, there's no

problem with this Psi being real. The total Psi just can't be real in general. But this

one can be a real, and we'll consider those cases as well.

So, things that we want to say is that this is a second order differential equations in

space. So second order differential equation in space. You could write it here. The

H operator has partial derivatives, but this time time, you might as well say that this

is minus h squared over 2m. The second Psi vx squared plus v of x tines Psi of x.

Because Psi only depends on x, might as well write it as complete derivative. So,

second order differential equation.

And therefore, the strategy for this equation is a little out there in relation to the

Schrodinger equation. We said, in the Schrodinger equation, we know the wave

function everywhere, you know it later. Here, if you know it at one point-- the wave

function-- and you know the derivative at that one point, you have it everywhere.

Why is that? Because that's how you solve a differential equation. If you know the

wave function and the derivative at the point, you go to the equation and say, I know

the wave function and I know the first derivative, and I know the second derivative.

So, a little later I can know what the first derivative is, and if I know what the first

derivative is a little later, I can then know what the wave function is a little later, and

you just integrate it numerically.

So, you just need to know the wave function Psi of x zero and Psi prime at x zero

suffice for a solution when v is regular. But this v is not too complicated, or too

strange, because you can always find exceptions. You have the square well

potential, and you say, oh, I know the wave function is here and its derivative is

zero. Does that determine the solution? No, because it's infinite. There's no space
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here, really, and you should work here. So, basically, unless v is really pathological,

Psi and Psi prime are enough to solve for everything.

And that actually means something very important, that if Psi is equal to zero at x

zero is equal to zero, and Psi prime at x zero is equal to zero, then under these

regular conditions, Psi of all x is zero. Because you have a differential equation

which the initial value is zero, the Psi prime is zero. And you go through the

equation, you see that every solution has to be zero. It's the only possibility here.

So what happens now is the following-- that you have a physical understanding that

your wave function, when it becomes zero-- it may do it slowly that it's becoming

zero, but never quite being zero-- but if it's zero, it does it with Psi prime different

from zero, so the wave function is not zero all over. So, this is a pretty important fact

that is useful many times when you try to understand the nature of solutions.

So what else do we have here? Well, we have energy Eigenstates on the spectrum.

So, what is an energy Eigenstate? Well, it's a solution of this equation. So a solution

Psi-- a solution for Psi is an energy Eigenstate. Then, this set of values of E is this

spectrum. And these two values of E-- if there's a value of E that has more than one

solution, we say the spectrum is degenerate. So a degenerate spectrum is more

than one Psi for a given E.

So, these are just definitions, but they're used all the time. So, our energy

Eigenstates are the solutions of this. The funny thing about this equation is that

sometimes the requirement that Psi be normalized means that you can't always find

the solution for any value of E. So, only specific values of Es are allowed-- you know

that for the harmonic oscillator, for example-- and therefore there's something

called the spectrum, which is the allowed values. And many times you have

degeneracies, and that makes for very interesting physics.

Let's say a couple more things about the nature of this wave function. So, what kind

of potentials do we allow? We will allow potentials that can fail to be bounded. What

do we allow? We allow failure of continuity. Certainly, we must allow that in our

potentials that we consider, because you have even the finite square well. The
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potential is not continuous. You can allow as well failure to be bounded.

So, what is a typical example? The harmonic oscillator, the x squared potential. It's

not bounded. It goes to infinity. So, we can fail to be continuous, but we can fail at

one point, another point, but we shouldn't fail at infinitely many points, presumably.

So, it's piecewise continuous. It can fail to be bounded, and it can include delta

functions. Which is pretty interesting, because a lot of physics uses delta functions,

but a delta function is a complicated thing. We'll include delta functions but not

derivatives of them, nor powers. So we won't take anything more strange than delta

functions, collections of delta functions.

So, this is really how delicate your potentials will be. They will not be more

complicated than that. But for that, we will assume, and it will be completely

consistent to require the following for the wave functions. So Psi is continuous-- Psi

of x-- is continuous and bounded. And its derivative is bounded. Psi prime is

bounded.

AUDIENCE: What about Psi's behavior at infinity?

PROFESSOR: Sorry?

AUDIENCE: What kind of extra conditions do we have to impose of Psi's behavior at infinity?

PROFESSOR: Well, I will not impose any condition that is further than that, except the condition

that they've been normalizable. And even that we will be a little-- how would I say,

not too demanding on that. Because there will be wave functions, like momentum

Eigenstates that can't be normalized. So, we'll leave it at that.

I think probably this is what you should really box, because for a momentum

Eigenstate, e to the ipx over h bar. This is a momentum Eigenstate. This is

continuous. It's bounded. The derivative is bounded. It is not normalizable, but it's

so useful that we must include in the list of things that we allow. So, bound states

and non-bound states are things that are not normalizable. So, I don't put

normalization.
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Now, if you put normalization, then the wave function will go to zero at infinity. And

that's all you would want to impose. Nothing else. So, really in some sense, this is it.

You don't want more than that.

AUDIENCE: Is normalization sufficient to ensure the derivative also goes to zero at infinity?

PROFESSOR: Sorry?

AUDIENCE: Is normalization sufficient to ensure that the--

PROFESSOR: Not that I know. I don't think so.

AUDIENCE: Then why is integration by price generically valid?

PROFESSOR: It's probably valid for restricted kinds of potentials. So you could not prove it in

general. So, you know, there may be things that one can generalize and be a little

more general, but I'm trying to be conservative. I know that for any decent potential-

- and we definitely need Psi prime bounded. And wave functions that go to zero, the

only ones I know that also have Psi prime going to zero. But I don't think it's easy to

prove that's generic, unless you make more assumptions.

So, all right. So, this we'll have for our wave functions, and now I want to say a

couple of things about properties of the Eigenstates. Now, we will calculate many of

these Eigenstates, but we need to understand some of the basic properties that

they have. And there's really two types of identities that I want you to be very aware

that they play some sort of dual role-- a pretty interesting dual role-- that has to do

with these wave functions.

So, the Eigenstates of-- Eigenstates of H hat-- these are the energy Eigenstates.

you can consider them and make a list of them. So, you have an energy E zero less

than or equal an E 1, E 2. Just goes like that. And you have a Psi zero, Psi 1. All this

wave functions. And then H hat Psi N is equal to E N Psi N. You have a set of

solutions.

So, this is what will happen if you have a good problem. A reasonable potential, and
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nothing terribly strange going on. There would be a lot of solutions, and they can be

chosen to be orthonormal. Now at first sight, it's a funny term to use-- orthonormal.

This is a term that we use for vectors. Two vectors are orthogonal, and we say

they're orthonormal if they have unit length, and things like that.

But what do we mean the two functions are orthonormal? Well, our function's

vectors. Well, that's a little dubious. But the way we will think in quantum mechanics

is that, in some sense, functions are vectors in an infinite dimensional space. So,

they're just vectors, but not in three dimensions. Why? Think of it. If you have a

function, you have to give values-- independent values-- at many points-- Infinitely

many. And if you give all those values, you've got the function. If you have a vector,

you have to give components, and you've got the vector.

So, in a sense, to give a function, I have to give a lot of numbers. And I can say the

first vector is the value along the direction-- the first component is the value around

zero. The second unit vector is the value of about 0.01, 9.02, going on and on. And

then list of them, and you have a vector of infinite dimensions.

You say, totally useless. [LAUGHTER] No, it's not totally useless. Actually, if you

visualize that-- and we'll do it later more-- you will be able to understand many

formulas as natural extensions.

So, what does it mean that these two functions are orthonormal? Well, a dot

product, or orthonormality, is to say that the dot product is zero. And the way we dot

product functions Psi m and Psi n of x is we take their values at the same point with

star one, and we integrate. And, if this is equal to delta mn, we say the functions are

orthonormal.

So, ortho, for orthogonal, which says that if m is different from n, the Kronecker

delta, that symbol is equal to one if the two labels are the same, or zero otherwise.

If they're different, you get zero.

The inner product-- this left hand side is called the inner product-- is zero. On the

other hand, if they are the same, if m is equal to n, it says that the Psi squared is
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one. Kind of like a wave function that is well normalized. So we say normal for

orthonormal. So these are orthonormal wave functions, and that's good. This is

called orthonormality.

But then there is a more subtle property, which is that this set of functions is enough

to expand any function in this interval that you're doing your quantum mechanics.

So, if you have any reasonable function, it can be written as a superposition of

these ones. So, this differential equation furnishes for you a collection of functions

that are very useful. So this is orthonormality.

This is also completeness, which is to say that any function can be written as a sum

of of this function. So I will write it as this. Psi of x-- an arbitrary Psi of x-- can be

written as bm Psi n of x n equals zero to infinity, where the bn's are complex.

So, this is an assumption, but it's a very solid assumption. When you study

differential equations of this type-- Sturm-Liouville problem-- this is one thing that

mathematicians prove for you, and it's not all that easy. But the collection of wave

functions is good in this sense. It provides you a complete set of things that any

function can be written in terms of that.

I'm not saying this satisfies any particular equation. You see, this function satisfies

very particular equations-- those equations-- but this is an arbitrary function. And it

can be written as a sum of this. See, these equations have different energies for

different Psi's. This Psi here satisfies no obvious equation.

But here is a problem that this is useful for. Suppose you're given a wave function

at, at the given time, you know what it looks like. So, here is your wave function. Psi.

And you know that Psi at x and time equals to zero happens to be equal to this Psi

of x that we wrote above. So, it's equal to bn Psi n of x.

Well, if you know that, if you can calculate this coefficient, the wave function of time

equals zero is known, say, and it was given by this thing, which is then written in this

form. If you can write it in this form, you've solved the problem of time evolution,

because then Psi of x at any time is just simply obtained by evolving each
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component. Which is bn e to the minus iEnt over h bar Psi n of x. So this is the

important result.

Now, look what has happened. We have replaced each term. We added this

exponential. Why? Because then each one of these is a solution of the full

Schrodinger equation. And therefore a superposition with complex coefficients is still

a solution of the Schrodinger equation.

Therefore, this thing I've put by hand is, you would say it's ad hoc. No, it's not.

We've put it by hand, yes, but we've produced a solution of the Schrodinger

equation, which has another virtue. When t is equal to zero, it becomes what you

know the wave function is.

So, since this solves the Schrodinger equation-- time equals zero gives you the right

answer. And you remember that the Schrodinger equation, if you know that time

equals zero, the term is a wave function everywhere-- this is the solution. It's not

just a solution. It's the solution.

So, you've solved this equation, and it's a very nice thing. It all depends, of course,

on having found the coefficients bn. Because typically at time equals zero, you may

know what the wave function is, but you may not know how to write it in terms of

these coefficients bn.

So, what do you do then? If you don't know those coefficients, you can calculate

them. How do you calculate them? Well, you use orthonormality. So you actually

take this and integrate against another Psi star. So you take a Psi star sub m and

integrate-- multiply and integrate. And then the right hand side will get the

Kronecker delta that will pick out one term.

So, I'm just saying in words a two line calculation that you should do if you don't see

this as obvious. Because it's a kind of calculation that you do a few times in life.

Then it becomes obvious and you never do it again. It's minus infinity to infinity dx

Psi m star of x Psi of x dx. So, bm is given by this quantity, or bn is given by this

quantity. You obtain it from here plus orthonormality.
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So, once you have this bn, you can do something that may-- if you look at these

things and say, well, I'm bored, what should I do? I say, well, you have bm. Plug it

back. What happens then? You say, why would I plug it back? I don't need to plug it

back.

And that's true, but it's not a crazy thing to do, because it somehow must lead to

some identity. Because you solve an equation and then plug it back and try to see if

somehow it makes sense. So either it makes sense, or you learned something new.

So, we were supposed to calculate the bn's. And now we have them, so I can plug

this back here. So what do I Get Psi of x now is equal to the sum from n equals zero

to infinity. bn-- but this bn is the integral of Psi n star of x prime. I put here Psi of x

prime. dx prime. I don't want to confuse the x's with x prime, so I should put the x

primes all over here. Psi n of x.

Well, can I do the integral? No. So, have I gained anything? Well, you've gained

something if you write it in a way that Psi is equal to something times Psi. That

doesn't look all that simple, but we can at least organize it.

Let's assume things are convergent enough that you can change orders of sums

and integrals. That's an assumption we always do. I'll write it like this. dx prime. And

now I'll put the sum here equals zero to infinity of Psi n star of x prime. And I'll put

the other Psi here as well. The Psi n of x over here. I'll put the parentheses, and

finally the Psi of x prime here.

So, now it's put in a nice way. And it's a nice way because it allows you to learn

something new and interesting about this. And what is that? That this must be a

very peculiar function, such that integrated against Psi gives you Psi. And what

could it be? Well, this is of the form, if you wish-- the x prime-- some function of x

and x prime-- times Psi of x prime. So, this k is this thing.

Well, you can try to think what this is. If you put the delta function here-- which may

be a little bit of a cheat-- you will figure out the right answer. This must be a function

that sort of picks out the value of the function at x by integrating. So it only cares

18



about the value at x. So, it must be a delta function. So, in fact, this is a delta

function, or should be a delta function.

And therefore the claim is that we now have a very curious identity that looks as

follows. It looks like n equal zero to infinity, Psi n star of x prime Psi n of x is actually

delta of x minus x prime.

So, this must be true. If what we said at the beginning is true, that you can expand

any function in terms of the Eigenfunctions, then, well, that's not such a trivial

assumption. And therefore, it allows you to prove something fairly surprising, that

this must be true, that this identity must be true.

And I want you to realize and compare and contrast with this identity here. One is

completeness. One is orthonormality. There are two kinds of sums going on here.

Here is sum over space, and you keep labels arbitrary-- label indices arbitrary. So,

sum over space. These functions depend on space and on labels. Sum over space,

and keep the labels, and you get sort of a unit matrix in this space, in the space of

labels.

Here, you keep the positions arbitrary, but sum over labels. And now you get like a

unit matrix in the space of positions. Something is one-- but actually infinite, but you

couldn't do better-- when x is equal to x prime. So, if you think of it as a matrix, this

function in x and x prime is a very strange matrix, with two indices, x and x prime.

And when x is different from x prime, it's zero, but when x is equal to x prime, it's

one. But it has to be a delta function, because continuous variables. But it's the

same idea.

So, actually if you think of these two things, x and m as dual variables, this is a

matrix variable, and then you're sort of keeping these two indices open and

summing over the other index. Multiplying in one way you get a unit matrix. Here,

you do the other way around. You have a matrix in m and n. This is a more familiar

matrix, but then you sum over the other things.

So, they're dual, and two properties that look very different in the way you express
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them in words. One is that they're orthonormal. The other is that they're complete.

And then suddenly then the mathematics tells you there's a nice duality between

them.

So, the last thing I want to say today is about expectation values, which is another

concept we have to review and recall. So let's give those ideas.

So, if we have a time-dependent operator-- no, a time independent-- we'll do a time-

independent operator, I'm sorry. Time-Independent operator. And this operator will

be called A hat. No time dependence on the operator. So, then we have the

expectation value of this operator on a normalized state.

So what does that mean? The expectation value of this operator on a state-- on a

wave function here. Now, this wave function is time-dependent. So this expectation

value of this operator is expected to be a function of time.

And how is it defined? It's defined by doing the following integral. Again, from minus

infinity to infinity, dx Psi star of x and t, and then the operator A acting on Psi of x

and t. And Psi is supposed to be a normalized state.

So, notice the notation here. We put the Psi here because of the expectation--

whenever somebody asks you the expectation value for an operator, it has to be on

a given state. So you put the state. Then you realize that this is a time-dependent

wave function typically, so it could depend on time.

Now, we said about stationary states that if the state is stationary, there's a single

time exponential here. There's just one term, e to the minus iEt over h bar. And if A,

of course, is a time-independent operator, you won't care about the exponential.

You will cancel this one, and there will not be a time dependence there.

But if this state is not stationary-- like most states are not stationary-- remember it's

very important. If you have a stationary state, and you superimpose another

stationary state, the result is not stationary. Stationary is a single exponential. More

than one exponential is not stationary. So when you have this, you could have time

dependence. So that's why we wrote it. Whenever you have a state that is not
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stationary, there is time dependence.

Now, you could do the following thing. So here is a simple but important calculation

that should be done. And it's the expectation value of H. So what is the expectation

value of the Hamiltonian at time t on this wave function Psi that we've computed

there?

So, we would have to do that whole integral. And in fact, I ask you that you do it. It's

not too hard. In fact, I will say it's relatively simple. And you have H on Psi of x and t,

and then you must substitute this Psi equal the sum of bn Psi n.

And you have two sums. And the H acting on each side n-- you know what it is. And

then the two sums-- you can do the integral using orthonormality. It's a relatively

standard calculation. You should be able to do it. If you find it hard, you will see it, of

course, in the notes. But it's the kind of thing that I want you to review.

So, what is the answer here? It's a famous answer. It's bm squared En. So, you get

the expected value of the energy. It's a weighted average over all of the stationary

states that are involved in this state that you've been building. So your state has a

little bit of Psi zero, Psi 1, Psi 2, Psi 3. And for each one, you square its component

and multiply by En. And this is time-independent.

And you say, well, you told me that only for stationary states, things are time-

independent. Yes, only for stationary states, all operators are time-independent, but

the Hamiltonian is a very special operator. It's an energy operator, and this is a time

independent system. It's not being driven by something, so you would expect the

energy to be conserved. And this is pretty much the statement of conservation of

energy, the time-independence of this thing.

My last remark is technical about normalizations, and it's something you may find

useful. If you have a wave function that is Psi, which is not normalized, you may say,

OK, let's normalize it. So, what is the normalized wave function? The normalized

wave function is Psi divided by the square root of the integral of Psi star Psi dx. You

see, this is a number, and you take the square root of it. And this is the Psi of x and
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t. If the Psi is not normalized, this thing is normalized.

So, think of doing this here. Suppose you don't want to work too hard, and you want

to normalize your wave function. So, your Psi is not normalized. Well, then this is

definitely normalized. You should check that. Square it, an integrate it, and you'll

see. You'll get one. But then I can then calculate the expectation value of A on that

state, and wherever I see a Psi that should be normalized, I put this whole thing.

So what do I end up with? I end up with this integral from infinity to infinity dx Psi

star A A hat Psi divided by the integral from minus infinity to infinity of Psi star Psi dx.

If you don't want to normalize a wave function, that's OK. You can still calculate its

expectation value by working with a not-normalized wave function. So in this

definition, Psi is not normalized, but you still get the right value.

OK, so that's it for today. Next time we'll do properties of the spectrum in one

dimension and begin something new called the variational problem. All right.

[APPLAUSE]

Thank you, thank you.
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