
8.05, Quantum Physics II, Fall 2012

TEST

Wednesday October 24, 12:00-1:30pm

You have 90 minutes.

Answer all problems in the white books provided. Write

YOUR NAME and YOUR SECTION on your white

book(s).

There are five questions, totalling 100 points.

None of the problems requires extensive algebra.

No books, notes, or calculators allowed.

TIME MANAGEMENT: I suggest 40 minutes for the

first three questions and 25 minutes for each of the re-

maining two.
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Formula Sheet

• Conservation of probability

∂ ∂
ρ(x, t) +

∂t
J(x, t) = 0

∂x

~
ρ(x, t) = |ψ(x, t)|2 ; J(x, t) =

∂
ψ

2im

[

∗ ∂
ψ

∂x
− ψ ψ∗

∂x

]

• Variational principle:

Egs ≤
∫

dxψ∗(x)Hψ(x)
, for all ψ(x)∫

dxψ∗(x)ψ(x)

• Spin-1/2 particle:

e~
Stern-Gerlac : H = −~µ · ~h B , ~µ = g

2m

1 ~ ~S = γS
~

e~
µ

B
=

~S
, ~µe =

2me
−2µ

B
,

~

1 0
In the basis |1〉 ≡ |z; +〉 = |+〉 =

(

0

)

, |2〉 ≡ |z;−〉 = |−〉 =
(

1

)

~
Si =

0 1 0 1 0
σi σx = ; σy =

−i
; σz =

2

(

1 0

) (

i 0

) (

0 −1

)

[σi, σj] = 2iǫ ~ijkσk →
[

Si , Sj

]

= i ǫijkSk (ǫ123 = +1)

~ ~ ~σiσj = δijI + iǫijkσk → (~σ · ~a)(~σ · b) = ~a · b I + i~σ · (~a× b)

eiMθ = 1 cos θ + iM sin θ , if M2 = 1

( )

(~a
exp i~a · ~σ = 1 cos a + i~σ · ~

a

)

sin a , a = |a|

exp(iθσ3) σ1 exp(−iθσ3) = σ1 cos(2θ)− σ2 sin(2θ)
exp(iθσ3) σ2 exp(−iθσ3) = σ2 cos(2θ) + σ1 sin(2θ) .

~
S~n = ~n · ~S = nxSx + nySy + nzSz = ~n · ~σ .

2
~

(nx, ny, nz) = (sin θ cosφ, sin θ sinφ, cos θ) , S~n |~n;±〉 = ± ~
2
|n;±〉

|~n; +〉 = cos(θ/2)|+〉 + sin(θ/2) exp(iφ)|−〉

|~n;−〉 = − sin(θ/2) exp(−iφ)|+〉 + cos(θ/2)|−〉
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• Bras and kets: For an operator Ω and a vector v, we write |Ωv〉 ≡ Ω|v〉

Adjoint: 〈u|Ω†v〉 = 〈Ωu|v〉

|α1v1 + α2v
∗

2〉 ∗
2〉 = α1|v1〉+ α2|v ←→ 〈α1v1 + α2v2| = α1〈v1|+ α2〈v2|

• Complete orthonormal basis |i〉

〈i|j〉 = δij , 1 =
∑

i

|i〉〈i|

Ωij = 〈i|Ω|j〉 ↔ Ω =
∑

Ωij i j
i,j

| 〉〈 |

〈i|Ω†|j〉 = 〈j|Ω|i〉∗

Ω hermitian: Ω† = Ω, U unitary: U † = U−1

• Matrix M is normal ([M,M †] = 0) ←→ unitarily diagonalizable.

• Position and momentum representations: ψ(x) = 〈 ˜x|ψ〉 ; ψ(p) = 〈p|ψ〉 ;

x̂|x〉 = x|x〉 , 〈x|y〉 = δ(x− y) , 1 =

∫

dx |x〉〈x| , x̂† = x̂

p̂|p〉 = p|p〉 , 〈q|p〉 = δ(q − p) , 1 =

∫

dp |p〉〈p| , p̂† = p̂

1〈x|p〉 = √
2π~

exp
( ipx

~

)

; ψ̃(p) =

∫

dx〈p|x〉〈x|ψ〉 = 1√
2π~

∫

dx exp
(

−ipx ψ
~

)

(x)

〈x|p̂n|ψ〉 =
(

~

i

d

dx

)n

ψ(x) ; 〈p|x̂n|ψ〉 =
(

i~
d

dp

)n

ψ̃(p) ; [p̂, f(x̂)] =
~
f ′(x̂)
i

1
x

2

∫ ∞

exp(ik )dx = δ(k)
π −∞

• Generalized uncertainty principle

(∆A)2 ≡ 〈(A− 〈A〉)2〉 = 〈A2〉 − 〈A〉2

(∆A)2
1

(∆B)2 ≥
(

〈Ψ|
2

[A,B]
2i

|Ψ〉
)

~
∆x∆p ≥

2

∆
∆x = √

2
and ∆p =

~√
2∆

for a gaussian wavefuntion ψ ∼ exp
(

−1
2

x2

∆2

)

∫ +∞

dx exp
−∞

(

−ax2
)

=

√

π

a
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d
Time independent operator Q :

i
Q

dt
〈 〉 = [

~
〈 H,Q]〉

~
∆H∆t ≥

2
, ∆t ≡ ∆Q

∣

d〈Q〉
∣

dt

∣

∣

• Commutator identities

[A,BC] = [A,B]C +B[A,C] ,

eABe−A 1
= B + [A,B] +

2
[A, [A,B]] +

1
[A, [A, [A,B]]] + . . . ,

3!

eABe−A = B + [A,B] , if [[A,B], A] = 0 ,

[B , eA ] = [B ,A ]eA , if [[A,B], A] = 0

eA+B = eAeBe−
1

2
[A,B] = eBeAe

1

2
[A,B] , if [A,B] commutes with A and with B

• Harmonic Oscillator

1
Ĥ =

1
p̂2 +

2m 2
mω2x̂2 = ~ω

(

N̂ +
1

,
2

)

N̂ = â†â

â =

√

mω

2~

(

x̂+
ip̂

mω

)

, â† =

√

mω

2~

(

x̂− ip̂
,

mω

)

x̂ =

√

~

2mω
(â + â†) , p̂ = i

√

mω~
(â† − â) ,

2

†
~ ˆ ˆ[x̂, p̂] = i , [â, â ] = 1 , [N, â ] = −â , [N , â† ] = â† .

1|n〉 = √ (a†)n
n!

|0〉

Ĥ|n〉 = En|n〉 = ~ω
( 1
n+ n

2

)

| 〉 , N̂ |n〉 = n|n〉 , 〈m|n〉 = δmn

â†|n〉 =
√
n+ 1|n+ 1〉 , â|n〉 =

√
n|n− 1〉 .

ψ0(x) = 〈x|0〉 =
(mω

π~

)1/4

exp
(

−mω
2~

x2
)

.
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1. True or false questions [20 points] No explanations required. Just indicate T or F

for true or false, respectively.

ˆ(1) The parity operator, P |x〉 = |−x〉, is both hermitian and unitary.

(2) For position eigenstates: |−x〉 = −|x〉
(3) Every N ×N matrix has N eigenvectors.

(4) For a finite dimensional Hilbert space with N energy levels E1 ≤ E2 ≤ . . . ≤ EN ,

〈ψ|H|ψ〉 ≤ EN for all normalized trial wavefunctions |ψ〉.

The following three questions refer to a one-dimensional x ∈ (∞,∞) Schrödinger

problem with a real, continuous and finite potential V (x) = V (−x) that admits

five bound states.

(5) The highest energy bound state has four nodes.

(6) Let ψ(x) denote a bound state wavefunction. There may exist points x0 ( 6= ∞)

where both ψ and is spatial derivative ψ′ vanish.

(7) An excited even bound state can have ψ(x = 0) = 0.

The following three questions refer to the operator

R = exp
( i

πŜx
~

)

ˆwhere Sx is the spin operator in the x direction.

(8) The operator R is unitary.

(9) The operator R is diagonalizable.

(10) R = 2i Ŝ
~ x .

2. Expectation values and uncertainty [15 points]

A useful equation relates the action of a Hermitian operator Ω on a normalized state

|Ψ〉 to its expectation value 〈Ω〉 and its non-zero uncertainty ∆Ω in the state:

Ω|Ψ〉 = 〈Ω〉|Ψ〉+ (∆Ω)|Ψ⊥〉 . (1)

Here |Ψ⊥〉 is (i) a normalized state, and (ii) is orthogonal to |Ψ〉. Prove the above

equation by showing that the state |Ψ⊥〉 defined by (1) has the two properties we

claim it has.
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3. A property of complex vector spaces [15 points]

Consider two vectors |u〉 and |v〉 in a complex vector space V as well as the linear

operator T : V→ V.

(a) Simplify the following expression

1
v

4

[

〈u+ v|T |u+ v〉 − 〈u− |T |u− v〉 − i 〈u+ iv|T |u+ iv〉 +i 〈u− iv|T |u− iv〉
]

and write your answer in terms of (some or all of) the overlaps 〈u|T |u〉, 〈u|T |v〉, 〈v|T |u〉,
and 〈v|T |v〉.

(b) Use your result in (a) to prove that if 〈w|T |w〉 = 0 for all w ∈ V then T is the

zero operator.

[Comment: This is a remarkable property of complex vector spaces that is not true in

real vector spaces. For a two-dimensional real vector space let T be the linear operator

that rotates vectors by 90◦. Then T is non-zero even though 〈v|T |v〉 = 0.]

4. An Anharmonic Oscillator [25 points]

Consider a particle of mass m moving in one-dimension under the influence of an x2n

potential

~
2

V (x) =
x2n

2m
, n

L2n+2
≥ 2 ,

with L a constant with units of length.

(a) Use dimensional analysis to estimate the ground state energy of the system up to

an undetermined dimensionless number.

(b) Consider the trial wavefunction ψ(x) = exp −b2 x2 for a variational analysis of

the ground with b a parameter to be adjusted

(

to obt

)

ain the best bound. Consider

also the following integrals
∫ ∞

dy e−2y2y2k = ck , k = 0, 1, 2, . . .
−∞

and assume the constants ck known. Determine the function F (b) that bounds

the ground state energy as

Egs ≤ F (b)

You do not have to minimize over b, but simplify your result for F , which also

depends on other constants of the problem.

(c) Sketch the potential in the limit of n→∞. What do you expect the ground state

energy to be? Explain.

(d) One can show (don’t try!) that the value of b for best variational estimate in

part (b) goes like bL
√∼ n for large n. Sketch the expected ψ and explain if this

is becoming a better or worse representation of the expected ground state as n

becomes larger and larger.
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5. A Three Dimensional Harmonic Oscillator [25 points]

Consider a particle of mass m confined to a three-dimensional harmonic potential with

rotational symmetry:
3

Ĥ =
∑

i=1

( p̂2i
2m

+
1
mω2x̂2

2 i

)

,

where [x̂i, p̂j] = i~δij . The corresponding raising and lowering operators are denoted

as â† ˆ
i and âi, with i = 1, 2, 3, and we have number operators Ni = â†i âi, also with

i = 1, 2, 3. (You are welcome to drop the “hats” from the a’s and a† to save time!)

(a) Using the â†i operators and a common vacuum state |0〉 for the three âi’s, explicitly
construct all states in (i) the ground state, (ii) the first excited level, and (iii) the

second excited level. Give their energies and state the degeneracy (The states

need not be normalized.)

We introduce the useful linear combinations

1
âL ≡ √

2
(â1 + iâ2), âR ≡

1√ (â1 − iâ2).
2

ˆ(b) Express H in terms of the number operators

N̂ ˆ
L = â†LâL, NR = â†Ra N̂ˆR , 3 = â†3â3 .

ˆ ˆ ˆExplain why {NL, NR, N3} form a complete set of commuting observables. What

is the energy of the state |nL, nR, n3〉?
(c) Make the list of states of the ground state and first two excited levels (as in (a))

but using the â†L, â
†
R, and â

†
3 operators to build the states.

(d) Consider the angular momentum operator

L̂z ≡ ~ (â†Ra
ˆˆ †

~ ˆ
R − âLâL) = (NR −NL) .

Ĥ L̂Show that [ , ˆ ˆ
z] = 0. Do H and Lz form a complete set of commuting observ-

ables? If yes, give an argument. If not, give an example of two degenerate states

that are not distinguished.

ˆ ˆ ˆ(e) Now consider the angular momentum operator L+ ≡ Lx + iLy and given by

L̂+

√
≡ 2 ~ ( â†3 âL − â†R â3 ).

ˆIs L+ Hermitian? From the second excited states of the oscillator, one can form
ˆ ˆ ˆa unique state |ψ〉 that is killed both by Lz and by L+ (i.e. Lz|ψ〉 = 0 and

L̂+|ψ〉 = 0). Find it. This is the unique state of the second excited level that has

no angular momentum whatsoever!
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