8.05 Quantum Physics 11, Fall 2011
FINAL EXAM
Thursday December 22, 9:00 am -12:00

You have 3 hours.

Answer all problems in the white books provided. Write
YOUR NAME and YOUR SECTION on your white
book(s).

There are seven questions, totalling 100 points.
None of the problems requires extensive algebra.

No books, notes, or calculators allowed.



Formula Sheet

e Conservation of probability
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e Variational principle:
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e Complete orthonormal basis |i)
(ilj) =65, 1= )il
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hermitian operator: O = @, unitary operator: UT = U~}

e Position and momentum representations: ¢ (z) = (z[¢)) ;  ¥(p) = (pY) ;

fa) = ala), (ely) =Sz —y), 1= /dwrx><xr, i =

plp) =plp) . {alp) = (¢ —p). 1:/dp|p><p|, pr=p

1 pT o 1 1px
() = =exp(E) 0 00) = [ delpla)el) = —— [ dvesp (=

h d

i) = (F) v bl = (0) 00 b@) = 5@

1 oo

2r ) o

exp(ikz)dx = §(k)

e Generalized uncertainty principle
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e Commutator identities
(4, BC = [A, BIC + BIA,C],
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e’Be™ =B+ [A,B], if [[A B],A =0,
[B,e]=[B,Ale?, if [[A,B],Al=0
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if [A, B] commutes with A and with B
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e Time evolution
W, t) = U(t,0)|W,0), U unitary

U(t,t) =1, Ults,t))U(t1,t0) = Ulta, o), Ultr,t2) = U'(ta, 1)
d ~ d .
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e Two state systems
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e Harmonic Oscillator
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e Coherent states and squeezed states
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e Orbital angular momentum operators
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e Spherical Harmonics
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e Algebra of angular momentum operators J (orbital or spin, or sum)
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[Ji, J]] = ZFLEUka X [JQ, Jl] = 0
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e Radial equation

R P K200+ 1)
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e Hydrogen atom
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e Addition of Angular Momentum J = fl + jQ
Uncoupled basis :  [j1j2; mimg) CSCO : {JZ, J2, Ji., Jos}

Coupled basis :  |j172;7m) CSCO : {J2,J3,J%, J.}

N ®jp=U1+5)@Gi+i—1)&...8|H — jo

|j1ja; jm) = Z |j1J2; mamg) <j1j2;m1m2\j1j2;jmz
mitma=m Clebsctho;i,an coefficient

L.
Ji-Jyp = §(J1+J27 + Ji—Joy) + Jiz oz

Combining two spin 1/2 : % ® % =160
[L1) =111,
1 1
[1,0) ZE(I TH+111), ’O’0>:E(| Th=111)
11L,-1)=1[1).



1. True or false questions [20 points] No explanations required. Just indicate T or F

for true or false, respectively.

The anti-commutator of two hermitian operators is hermitian.

The Heisenberg Hamiltonian and the Schrodinger Hamiltonian are equal if the
Schrodinger Hamiltonians at different times commute.

The length scale ag - «v is the classical electron radius (ag is the Bohr radius and
« the fine structure constant).

The length scale ag - o? is the Compton wavelength of the electron.

In the factorization method either H® or H® must have a normalizable zero
energy eigenstate.

If J; and J, are sets of operators each satisfying the algebra of angular momentum
the combination J; — J5 also satisfies the algebra of angular momentum.

Let J_i and jg be angular momentum operators. The operator jl . J_é commutes

The traces of J,, J,, and J, are all zero for any representation (7 = 1/2,1,3/2,...).

The states on the first excited level of the spherically symmetric harmonic oscil-

lator (potential V (r) = tmwr?) fit into an ¢ = 1 multiplet of angular momentum.

The states on the second excited level of the spherically symmetric harmonic
oscillator fit into an ¢ = 2 multiplet of angular momentum.

. A short problem on Harmonic Oscillator [10 points]

Associated with the annihilation and creation (Schrédinger) operators @ and a' there

are Heisenberg operators a(t) and af(t). Calculate these time-dependent Heisenberg

operators in terms of @, a’ and other physical constants. How is the Heisenberg coun-
terpart Ny (t) of the number operator N related to N?



3. Deriving and testing an inequality [15 points]

(a) Let u denote a Hermitian operator whose eigenvalues are all non-negative so that
the following expectation value is non-negative:

(= w)”) > 0.

u

Use the above to prove an inequality relating (%) and é

(b) Verify your inequality for the operator u = r and the ground state of the hydrogen

atom by direct calculation of (r) and (). (The second can be obtained without

doing integrals by using the virial theorem which tells you that the (T') = —(V),

where T" and V' are, respectively, the kinetic and potential energies).

Possibly useful integral: [~ dza"e™ = nl forn=1,2,3,...

4. A curious rewriting of the Hydrogen Hamiltonian [15 points]

Consider the hydrogen atom Hamiltonian
- 2
g X _<
2m r
We will write it as

3 R R

1 T; T;
H — _Z<Az . _z)(Ai_. _z) 7
2mi:1 p+lﬁ7’ p Zﬁr T

where p; and z; are, respectively, the Cartesian components of the momentum and
position operators, and ( and ~ are real constants to be adjusted so that the two
Hamiltonians are the same.

(a) Calculate the constants § and .

(b) Explain carefully why for any state (H) > ~.

(c) Find the wavefunction of the state for which the above energy inequality is satu-
rated. You may assume that this wavefunction just depends on the radial coor-
dinate.
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5. Hamiltonian for three spin-1 particles [15 points]

Consider 3 distinguishable spin-1 particles, called 1,2, and 3, with spin operators
S1, S and S3, respectively. The spins are placed along a circle and the interactions are
between nearest neighbors. The hamiltonian takes the form

A/ = = = o 5
H=ﬁ<51'52+52'53+53'51>,
with A > 0 a constant with units of energy. For this problem it is useful to consider
the total spin operator S = S| + Sy + Ss.
(a) What is the dimensionality of the state space of the three combined particles.
Write the Hamiltonian in terms of squares of spin operators.
(b) Determine the energy eigenvalues for H and the degeneracies of these eigenvalues.

(c) Calculate the ground state, expressing it as a superposition of states of the form
|mi, ma,mg) = [1,mq) ®@ |1, mq) ® |1, m3) ,

where fim; is the eigenvalue of (S.); and applying some suitable constraint. [Hint:
The general superposition with arbitrary coefficients has 7 candidate states. Show
that the coefficient of |0, 0, 0) is zero and determine all others. Write your answer
as a normalized state.]

6. Factorization method structure [10 points]

In solving a central potential problem we need to find the spectrum of the set of
Hamiltonians Hy, with ¢ > 0.

Assume that with some superpotential W, we suceed in constructing Hamiltonians
Hﬁ(l) and Hf)such that
Hg = Hél) + Q s

with some constants «, assumed known and
@ _ g
H,” = Hy,+ 5,
with some constants 3, also assumed known. Since we know the superpotential, the

operators A, and A} are determined as well.

Finally, assume that H, él) has a zero-energy solution (b&;, known for each /.

(a) Write expressions for the three lowest energy eigenstates ¢, of Hy, (n = 0,1, 2)
and give their energies E,, ,. Your expressions for the states should use the zero
energy wavefunctions of H) and the A or A" operators. Your expressions for the
energy should use the constants o and ( introduced above.

(b) Generalize to write an expression for the energy eigenstate ¢, of Hy with arbi-
trary n > 0 and find its energy E,, ;.
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7. Time dependent uncertainty on a squeezed vacuum [15 points]

Recall the definition of the squeezed vacuum state

0,) = SMI0), with S(y) = exp(—g(ala' —aa)), veC.

(a) Calculate the action of the squeezing operator S on the position and momentum
operators:

=

St aSy) = ...
STmpSh) = ...

Write your answers in terms of Z, p, and simple functions of .

(b) Let |0, ,t) denote the state that results from time evolution of the squeezed vac-

uum |0,) at time zero. Determine the time dependent uncertainty (Az(t))? on

the state. Your answer should be of the form

Ax(t)? = 1 Gy,wt).,

2mw

where G(v,wt), to be determined, is a unit-free function of ~ and wt.
[A little help with the algebra: (0|(zp + pz)|0) = 0. ]
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