
Quantum Physics II (8.05) Fall 2013
 
Assignment 8
 

Massachusetts Institute of Technology Due Friday, November 8, 2013 
Physics Department 3:00 pm 
November 2, 2013 

Problem Set 8 

1. Exercises with position and momentum eigenstates in the harmonic oscil­
lator [10 points] 

(a) Use the expression for |x) to calculate the wavefunction for the excited state 
|2) = √1 a†a†|0). 

2 

(b) Construct explicitly the momentum eigenstates |p) of the harmonic oscillator. 
These states satisfy the familiar property p̂|p) = p|p). You may consult the 
derivation of the position eigenstates in the lecture notes. 

2. Coherent States of the Harmonic Oscillator [10 points] 

This problem reviews coherent states. Some of the questions are answered in the 
lecture notes. For maximum benefit try using the notes as little as possible! 

For any complex number α we define the coherent state |α) by 

αâ†−α ∗ |α) ≡ e a|0) . 

(a) Show that â|α) = α|α). 

(b) Write the state |α) as a superposition of the energy eigenstates |n). What is the 
probability that a particle in the state |α) has energy En? 

(c) Show that any two different coherent states |α) and |β) are not orthogonal by 
calculating (β|α). 

(d) Evaluate ΔH/(H) on the state |α) and show that it decreases as |α| increases. 

(e) Evaluatee (α|x̂|α) and (α|p̂|α). Evaluate Δx and Δp for the state |α) and show 
that this is a minimum uncertainty state. 

(f) Expand the t = 0 state |α) as a superposition of energy eigenstates to write 
an expression for the state at all subsequent time t > 0. Show that the state 
continues to be a coherent state for some value of α(t) that you must determine. 

(g) Compute the time-dependent expectation values (x̂), (p̂), (Ĥ), Δx and Δp as­
suming that at t = 0 we have a coherent state |α0) with α0 real. 
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3. More general squeezed states [15 points] (no hats on the a’s here!) 

Consider the normalized squeezed vacuum state |0γ), with γ ∈ R given by 

γ † −|0γ) ≡ S(γ) |0) , with S(γ) = exp
�
− (a † a aa)

� 
. 
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For coherent states we used the operator D(α) acting on the vacuum
 

D(α) = exp
(
α a† − α∗ a

)
, |α) = D(α)|0) . 

More general squeezed states |α, γ) arise by first squeezing and then translating: 

|α, γ) ≡ D(α)S(γ)|0) . 

Note that |0, γ) = |0γ) and |α, 0) = |α). 

(a) Calculate the operator a(γ) defined by the relation 

a(γ) = S†(γ) a S(γ) . 

The way to do this is to derive a (second-order) differential equation for a(γ). 
The answer should express a(α) as a linear combination of a and a† . Write also 
the corresponding expression for a†(γ) ≡ (a(γ))† and check the value of the 
commutator [a(γ) , a†(γ)]. 

(b) Calculate the expectation value (N) of the number operator N = a†a and its 
uncertainty ΔN on the squeezed vacuum state |0γ). The answers should just be 
functions of γ. Find the ratio ΔN/(N) and plot it as a function of γ. Can this 
ratio be made small? 

(c) Calculate the expectation value (N) on the generalized state |α, γ). Here α can 
be complex. 

(d) In class we showed that the electric field operator at some point in space for a 
single-mode electromagnetic field of frequency ω takes the form 

�
−iωt † iωt

�
E(t) = ae + a e ,E E0 

with E0 a real constant. Calculate the expectation value (EE(t)) and the uncer­
tainty ΔE(t) on the state |α, γ). 



3 Physics 8.05, Quantum Physics II, Fall 2013 

4. Maxwell’s equations and photon states [10 points] 

Consider the electromagnetic fields on the cavity as given in eqn. (5.38) of the updated 
lecture notes (Section 5.3). Note that we are working with conventions in which E and 
cB have the same units. Write the set of four Maxwell equations (in the appropriate 
units!) and derive the conditions on q(t) and p(t) that they imply. 

Derive the equations of motion for the Heisenberg operators q̂(t) and p̂(t) using (5.40) 
and show that they are in fact the same conditions arising from Maxwell’s equations. 

This shows that the Hamiltonian H(q̂, p̂) provides a good quantum theory of the 
classical EM mode in the cavity. 

5. Time Evolution in a Two-State Problem [10 points] (based on Sakurai’s 2.9.) 

A box containing a particle is divided into right and left compartments by a partition. 
If the particle is known to be on the left side with certainty, we call the state |L); if on 
the right, we call the state |R). (Of all possible |L) and |R) states, we consider only 
the ones with the lowest energy, thus we have a two-state problem.) Assume that the 
box is symmetric and shift the zero of energy so that (L|Ĥ|L) = (R|Ĥ|R) = 0. The 
Hamiltonian does not vanish, however, because the particle can tunnel through the 
partition, as allowed by the coupling 

Ĥ = Δ( |L)(R|+ |R)(L| ) 

where Δ is a real number with the dimension of energy. 

(a) Find normalized energy eigenstates and the corresponding energy eigenvalues. 

(b) Suppose that at time t = 0 the state vector is given by 

|ψ, 0) = cL|L)+ cR|R) . 

Find |ψ, t) by applying the time evolution operator. 

(c) Suppose that at time t = 0 the particle is on the right side with certainty. What 
is the probability for observing the particle on the left side as a function of time? 

(d) Suppose someone made an error and wrote Ĥ as 

Ĥ = Δ|L)(R| . 

What’s wrong with this Hamiltonian. Evolving with exp(−iHt/�), as you did 
in part (b), show that probability is not conserved. 

http:�p(t)using(5.40
http:ineqn.(5.38
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6. Altering an oscillation [10 points]
 

Consider a two-state system with basis states |1) and |2) and a Hamiltonian
 

 
0 −Δ

 
H = = −Δ σ1 , with Δ > 0 . 

−Δ 0

As you know, if the system is initially in the state |1) then the probability that the 
state is in |1) varies periodically between one and zero as a function of time. 

Add to H a time-independent term along σ3 so that, instead, the probability that 
the system is in state |1) varies periodically between one and some minimum value 
pmin > 0. Write the new term in the Hamiltonian in terms of Δ and pmin. Hint: It 
might be useful to write the Hamiltonian as the dot product of a vector with the spin 
operator and to think about time evolution as precession. 
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