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Quantum Physics II (8.05) Fall 2013
 
Assignment 5
 

Massachusetts Institute of Technology 
Physics Department Due October 11, 2013 
October 5, 2013 3:00 pm 

This week in lecture we will study uncertainty relations. 

Reading Assignment for Week Five 

Uncertainty relations: Griffiths, section 3.5, Shankar Chapter 9. 

Problem Set 5 

1. Translation operators [5 points]
 

Consider the coordinate-space and momentum-space translation operators
 

   ipx ˆ  ipx̂˜Tx = exp − , Tp = exp .
h h

(a) Verify that the above are translation operators by calculation of 

T † T̃ † 
x ˆ and ˆx Tx p p Tp . 

(b) Since x̂ and p̂ do not commute, the translation operators Tx and T̃p do not 
generally commute. But they sometimes do! Compute the commutator 

˜Tx , Tp = . . . 

You should find the CBH formula useful. What is the condition satisfied by x 
and p that guarantees that Tx and T̃p commute? 

2. Position and momentum operators [5 points]
 

In lecture we showed that
 
h d(x|p̂|ψ) = (x|ψ) . 
i dx

(a) Show that 
 

h  nd (x|p̂n|ψ) = ψ(x) . 
i dx

1
 



2 Physics 8.05, Quantum Physics II, Fall 2013 

(b) Show that x̂ is represented as ih d in the momentum representation, namely 
dp 

d (p|x̂|ψ) = ih (p|ψ) . 
dp

(c) Use the result in (b) to calculate the action of [x̂, p̂] on the state ket |ψ) in the 
momentum representation. Verify that you obtain the expected result. 

3. Elaborations on a theorem [10 points] 

We have shown in lecture that (v, T v) = 0 for all v ∈ V implies that T = 0 if V 
is a complex vector space. If V is a real vector space one can’t prove T = 0. To 
distinguish the two cases let 

Real case: (u, Su) = 0 , for all u , Complex case: (v, T v) = 0 , for all v 

We first want to examine the case of dimension two to see in a simple example why the 
theorem is true and why it fails for real vector space. So we will consider two-by-two 
matrices and two-component vectors. 

(a) Let S be represented by a real matrix Sij and u by the two real components ui 
with i, j = 1, 2. For the complex case let T be represented by a complex coefficient 
matrix Tij and v by the two complex components vi with i, j = 1, 2. Write out 
the quadratic forms and then apply the conditions that they vanish for all u and 
v, respectively. Show that you find Tij = 0. For what kind of matrices S does the 
vanishing of (u, Su) imply the vanishing of S. 

(b) Extend your argument to arbitrary size matrices, showing that Tij = 0 and again 
stating for what kind of matrices S the theorem holds. 

(c) Consider a complex vector space and an arbitrary linear operator. It can be 
shown that there is a basis for which the matrix representing the operator has an 
upper triangular form (the elements below the diagonal vanish). On the light of the 
above analysis explain why the same does not hold for arbitrary linear operators on 
real vector spaces. 

4. Projectors and the P 2 = P condition [10 points] 

Consider a vector space V and a linear operator P that satisfies the equation P 2 = P . 

(a) Show that V = null P ⊕ rangeP . 

The condition P 2 = P , however, is not enough to show that P is an orthogonal 
projector. One must additionally prove that any vector in the first summand is
 
orthogonal to any vector in the second summand.
 

(b) Show that any of the two conditions below guarantees that orthogonality:
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(1) P is Hermitian.
 

(2) |Pv| ≤ |v| for any v ∈ V .
 

Case (2) is harder than case (1). You may find it useful to prove first the following
 
result: Let u, v ∈ V . Then (u, v) = 0 if and only if |u| ≤ |u + av| for any a ∈ F.
 
(c) Invent a two-by-two matrix P that satisfies P 2 = P but fails to be a projector 
because (as you will demonstrate) violates both conditions (1) and (2) of part (b). 

5. Exercise with matrices. [5 points] 

Consider two hermitian matrices A1 and A2 that commute: 

    

1 0 1 2 1 1 
A1 = 0 0 0  , A2 = 1 0 −1 . 

1 0 1 1 −1 2 

The matrix A1 has eigenvalues and orthonormal eigenvectors 

      

1 −1 0 
� � 1 � � 1 � � 

λ1 = 2, �u1 = √ 0 ; λ2 = 0, �u2 = √  0 ; λ3 = 0, �u3 = 1 . 
2 21 1 0 

In the basis {�u1 , �u2 , �u3 } the matrix A2 takes the form 

  

3 ∗ ∗ √ 
0 ∗ − 2 . (1) 
0 ∗ ∗ 

Determine the missing entries (denoted by ∗) in the above matrix. Use your result 
to find the eigenvalues of A2. 

6. Minimum uncertainty [5 points] 

We showed in class that for two hermitian operators A and B the uncertainty in­
equality 

21 
(ΔA)2(ΔB)2 ≥ (Ψ| A, B |Ψ)

2i
 
is saturated on a state |Ψ) that satisfies
 

( ) ( ) ΔB 
B − (B) |Ψ) = iγ A − (A) |Ψ) , with γ = ± . 

ΔA
 

Verify explicitly this claim for the Gaussian states
 

−x2/(2Δ2)ψ(x) = Nei(p)x/h e 

that saturate the uncertainty inequality for the product of x̂ and p̂ uncertainties. 

(

〈 〉
)

[ ]
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7. Griffiths 3.32, p.126. Testing a version of the time-energy uncertainty 

relation [7 points] 

8. Upper and lower bounds for ground state energy. [8 points]
 

Consider the harmonic oscillator Hamiltonian
 

p 2 1 
H = + kx2 . 

2m 2 

Use a gaussian trial function and the variational principle to find an upper bound 
for the ground state energy. Use the uncertainty principle (as explained in lecture) 
to derive a lower bound for that same ground state energy. Use those two bounds to 
determine the ground state energy. 

9. Simultaneous diagonalization of two hermitian matrices [10 points] 

Consider the hermitian matrices A1 and A2:
 

 1 
 

  11 −11 1 0 −1 2 2 
 

1 1 
 

  1 −11 1 −1 0 
 2 2  

 A1 = , A2 =  1 1 . 
 0 −1 1 1

 
−1 

2 
1 

2 

−1 0 1 1 1 1−1 1
2 2 

These matrices commute so they can be simultaneously diagonalized: there is a 
unitary matrix U such that 

U−1 U−1A1U = D1 , A2U = D2 , 

where D1 and D2 are two diagonal matrices. Determine the matrices U, D1 and D2. 
Find the common eigenvectors of the two matrices and label them as ua1,a2 where 
a1 and a2 are the eigenvalues of A1 and A2 respectively. (You are urged to use a 
mathematical manipulator to avoid tedious arithmetic!). 
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