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Problem Set 3 

1.	 Spin one-half states along an arbitrary axis. [10 points] 

(a) An (unnormalized) spin state is given by 
( ) (

√ 
)

1 + i |+) − 1 + i 3 |−) . 
What direction does this spin state point to? 

(b) Consider the following sequence of experiments: 

i. First, prepare a beam of spin-1/2 atoms which are all in the state |+) by 
passing a beam through a Stern-Gerlach device oriented in the ẑ direction, 
and keeping only those atoms measured to have eigenvalue +1/2. 

ii.	 Then, pass these atoms through a second Stern-Gerlach device designed to 
measure Ŝfn, for some nn in the (x, z)-plane. That is, φ = 0; θ  0. Keep = 
only those atoms which have eigenvalue 1/2. 

iii.	 Finally, pass the atoms which remain through a third Stern-Gerlach exper­
iment, oriented in the same (z) direction as the first. 

Of all the atoms that entered the second magnet, what fraction are found by 
the third magnet to be in the state |+)? What fraction are found by the third 
magnet to be in the state |−)? What fraction never made it to the third magnet? 
Your answers will of course be functions of the angle θ. Argue that your answers 
make sense for θ = 0 (nn in the z direction), θ = π/2 (nn in the x direction) and 
θ = π (nn in the −z direction). 

2.	 Overlap of two spin one-half states. [10 points] 

Consider a spin state |n; +) where n is the unit vector defined by the polar and 
¯	 ′ azimuthal angles θ and φ and the spin state |n ′ ; +) where n is the unit vector defined 

by the polar and azimuthal angles θ ′ and φ ′ . Let γ denote the angle between the 
vectors n and n ′ : 

n · n ′ = cos γ . 

Show by direct computation that the overlap of the associated spin states is controlled 
by half the angle between the unit vectors:

  

  (n ′ ; +|n; +) 2 
= cos 2 γ . 
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3. Rotation of spin states. [10 points] 

We define the operator R̂n
(α), with α real and n a unit vector, by 

( iαŜn 
) ( α )

R̂
n
(α) ≡ exp − = exp −i n · σ ,

1 2
 

where we noted that Ŝn = 1 
2 n · σ .
 

(a) Using the definition of the exponential function and properties of the σ-matrices 
show that 

α α
R̂n

(α) = I cos − iσ · n sin . 
2 2
 

Verify by direct computation that R̂n
(α) is unitary.
 

(b) For brevity we write R̂y(α) for R̂êy (α) Evaluate the operator
 

ˆ (α)Ŝz 
ˆ (α)†
Ry Ry


in terms of Ŝx, Ŝy, and Ŝz.
 

(c) Find the state obtained by acting with R̂y(α) on |+). For what operator is the 
resulting state an eigenstate with eigenvalue 1/2. Explain why we can think of 
R̂y(α) as a rotation operator. (Similarly, one can show that R̂

n
(α) is a rotation 

operator around an axis pointing along n.) 

4. Schwarz inequality and triangle inequality [15 points] 

(a) For real vector spaces the familiar dot product satisfies the Schwarz inequality 

(na · nb)2 ≤ (na · na)(nb · nb) , or |na · nb| ≤ |na| |nb| . (1) 

Note that in the last inequality, the vertical bars on the left-hand side denote 
absolute value, but on the right-hand side they denote length of the vector. Prove 
this inequality as follows. Consider the vector na − λnb, with λ a real constant. 
Note that 

f(λ) ≡ (na − λnb) · (na − λnb) ≥ 0 , 
for all λ and therefore the minimum over λ is still non-negative 

min f(λ) ≥ 0 . 
λ 

When is the Schwarz inequality saturated? 

(b) For a complex vector space the Schwarz inequality reads 

|(a|b)|2 ≤ (a|a)(b|b) , or |(a|b)| ≤ |a| |b| . (2) 
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Here the norm is defined by |a|2 = (a|a). Prove this inequality using the vector 
|v(λ)) ≡ |a) − λ|b), with λ a complex constant and noting that 

f(λ) ≡ (v(λ)|v(λ)) ≥ 0 

for all λ so that its minimum over λ is non-negative.∗ When is the Schwarz 
inequality saturated? 

(c) For a complex vector space one has the triangle inequality 

|a + b| ≤ |a|+ |b| , (3) 

where the norm is defined by |a|2 = (a|a). Prove this inequality starting from 
the expansion of |a+ b|2 . You will have to use the property |Re(z)| ≤ |z|, which 
holds for any complex number z, as well as the Schwarz inequality. Show that 
the equality in (3) holds if and only if a = cb for c a real positive constant. 

5. Exercises in linear algebra. [10 points] 

(a) (from Axler’s book) Consider the following statement: U1, U2, and W are sub-
spaces of V and the following holds 

V = U1 ⊕W and V = U2 ⊕W . 

Can you conclude that U1 = U2? Namely, are they the same subspace? If yes, 
prove it. If no, give a counterexample. 

(b) Prove that F∞ (as defined in equation (1.4)) is an infinite dimensional vector 
space. (Comment: There may be several ways of showing this. I found it useful 
to use the result (stated in the notes) that in a finite dimensional vector space 
the length of any spanning list must be larger than or equal to the length of any 
list of linearly independent vectors. 

(c) Show that T is injective if and only if nullT = {0}. 

∗To minimize over a complex variable (such as λ) one must vary the real and imaginary parts. Equiv­
alently you can show that you can treat λ and λ∗ as if they were independent variables in the sense of 
partial derivatives (this may be good to discuss in recitation!) 
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6. Basis independent quantities. [10 points] 

Consider a vector space V and a change of basis from (v1, . . . vn) to (u1, . . . un) defined 
by the linear operator A : vk → uk, for k = 1, . . . , n. The operator is clearly invertible 
because, letting B : uk → vk, we have BA : vk → vk, showing that BA = I and 
AB : uk → uk, showing that AB = I. Thus B is the inverse of A. 

(a) Consider the mapping equations 

uk = Avk , and vk = B uk , 

and write them explicitly using the matrix representation of A in the v-basis 
and the matrix representation of B in the u-basis. Show that these two matrices 
are inverses of each other. 

Consider now the linear operator T in V . Let Tij({v}) denote its matrix representa­
tion in the v basis and Tij({u}) denote its matrix representation in the u basis. 

(b) Find a matrix relation between Tij({v}) and Tij({u}), written in terms of the 
matrix representative of A and its inverse. 

(c) Show that the trace of the matrix representation of T is basis independent. 

(d) Show that the determinant of the matrix representation of T is basis indepen­
dent. 
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