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Suggested Reading 

• Continued from last week: 

1. Griffiths section 7.1. 

2. Introduction to linear algebra, Griffith’s Appendix and Shankar Ch. 1. 

• Basic foundations of quantum mechanics: 

1. Griffiths Ch.3. Griffiths does not go into as much depth with Dirac notation as 
we do in lecture. 

Problem Set 2 

1. Square well with delta function [10 points] 

Consider the one-dimensional infinite square well 0 ≤ x ≤ a. We add a delta function 
at the middle of the well 

 a  
V (x) = V0a δ x − 

2
, V0 > 0 , (1) 

with V0 a large value with units of energy. In fact, V0 is large compared to the natural 
energy scale of the well: 

V0 
(

!2 ) ≡ γ ≫ 1 . (2) 
ma2 

The dimensionless number γ is taken to be large. The delta function is creating a 
barrier between the left-side and the right-side of the well. As the delta function 
intensity V0 becomes infinite we can get a singular situation. 

Calculate the ground state energy, including corrections of order 1/γ but ignoring 
higher order ones. Compare with the energy of the first excited state. What is 
happening to the energy difference between these two levels? 

2. Nodes in wavefunctions [10 points] 

We have written the Schrödinger equation in the form 

ψ ′′ + (E − U(x))ψ = 0 . 

1 



  

2 Physics 8.05, Quantum Physics II, Fall 2008 

Let ψk be the energy eigenstate with energy Ek and ψk+1 be the energy eigenstate 
with energy Ek+1 greater than Ek. 

(a) Show that 

 

 bb 
 

ψk+1ψk 
′ − ψkψk

′ 

+1  
= (Ek+1 − Ek) dx ψkψk+1 . (1) 

a a 

(b) Let now a, b with a < b be two successive zeroes of ψk(x) and assume, for 
convenience that ψk(x) > 0 for a < x < b. By making use of (1) show that ψk+1 

must change sign in the interval (a, b). That is, ψk+1 must have at least one 
zero in between each pair of zeroes of ψk. Hint: consider the sign of each side 
of equation (1) under the assumption that ψk+1 does not change sign in (a, b). 

3. Developing the variational principle [10 points] 

(a) Consider normalized trial wavefunctions ψ(x) that are orthogonal to the ground 
J

state wavefunction ψ1: dx ψ1 
∗(x)ψ(x) = 0. Show that the first excited energy 

E2 is bounded as: 
 

E2 ≤ dx ψ∗(x)Hψ(x) . 

This result has a clear generalization (that you need not prove): trial wavefunc­
tions orthogonal to the lowest n energy eigenstates give an upper bound for the 
energy of the (n + 1)-th state. 

(b) Assume we can use real wavefunctions and consider the functional 

J

dx ψ(x)Hψ(x)
F(ψ) = J . 

dx ψ(x)ψ(x) 

This functional has a remarkable property: it is stationary at the energy eigen­
states! You will do a computation that confirms this for a special case, while 
giving you insight into the nature of the critical point. Let us take 

L

ψ(x) = ψ2(x) + ǫnψn(x) , (3) 
n=1 

This is the first excited state perturbed by small additions of the other energy 
eigenstates: the ǫ’s are all taken to be small. Evaluate the functional F for 
this wavefunction including terms quadratic in the ǫ’s but ignoring terms cubic 
or higher order. Confirm that all linear terms in ǫ’s cancel, showing that the 
functional is indeed stationary at ψ2(x). Does any ǫ drop out to quadratic order? 
Discuss the nature of the critical point (maximum, minimum, flat directions, 
saddle). 

( )
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4. One-dimensional attractive potentials have a bound state [10 points] 

(Based on Exercise 5.2.2 of Shankar (p.163) part (b).) Use the variational principle 
to prove that any attractive potential in one dimension must have at least one bound 
state. We take an attractive potential to be one where the potential goes to zero 
at plus and minus infinity: limx→±∞ |V (x)| = 0, it is piecewise continuous, never 
positive, and not equal to zero. Note that it follows that V (x) = −|V (x)|. 

To do this, consider the trial wavefunction 

1/4α 
−αx2/2ψα(x) = e ,

π 

and try to show that the expectation value E(α) of Ĥ on this state 

!
2 d2 

E(α) = Hψα(x) , H = − − |V (x)| .dx ψα(x) ˆ ˆ
2m dx2 

can be made negative for a suitable choice of α. Finding the contribution of the 
potential term to E(α) is challenging. For arbitrary attractive V (x) it can’t be 
calculated explicitly, but finding a bound for it suffices. 

A bound can be obtained by finding a point x0 where the potential is continuous and 
takes a negative value (such point must exist). Suppose 

|V (x0)| = 2v0 > 0 . 

Since the potential goes to zero at plus and minus infinity, there is a finite interval 
[x1, x2] about x0 (with x1 < x0 < x2, Δ ≡ x2 − x1) for which 

|V (x)| ≥ v0 . 

Explain how the potential term can be bounded by replacing V (x) by a potential Ṽ
that satisfies Ṽ (x) = −v0 for x ∈ [x1, x2] and zero elsewhere. 

5. Variational analysis of the potential V (x) = αx4 [20 points] 

We are considering the SE 

!
2 d2ψ 

− + αx4 ψ = Eψ . 
2m dx2 

(a) Perform a change of coordinates, setting x = βu and determine the constant β 
so that the differential equation takes the form 

1 d2ψ 
4 −− + (u e)ψ = 0 . 

2 du2 

How is E given in terms of the unit-free constant e? 

( )

∫
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(b) Use an algebraic manipulator that can handle differential equations to determine 
the value of the constant e for the ground state energy to six digits accuracy 
(e ≃ 0.67). For this try integrating the equation numerically starting at u = 0 
setting ψ(0) = 1 and ψ ′ (0) = 0 (why is this derivative zero?). Only for discrete 
values of e the solution does not blow up as u becomes large. The lowest such 
value of e is the one you are looking for. 

(c) Write a candidate wavefunction for the variational principle and determine an 
upper bound for the first excited energy. 

(d) Use the algebraic manipulator to determine the next-to-lowest value of e (to 
three digits accurary) and compare with your variational estimate. 

6. A property of matrices [5 points] 

We can define a function of a matrix M by a power series. If f(z) is a function with 
L

∞ 
L

∞a Taylor series expansion f(z) = fnz
n, then we define f(M) ≡ fnM

n . n=0 n=0 
Let M be the matrix 

  


0 −i
 
M =

i 0

Show that eiMθ takes the form 

e iMθ = A(θ) 1 + B(θ)M, (4) 

where 1 is the 2 × 2 identity matrix and A and B are functions you must determine. 
What is the algebraic property of a matrix M of arbitrary size that would lead to 
this result? 
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