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Reading 

• Griffiths §4.1, §4.2, and §4.3 on separation of variables and angular momentum. 

• For further reading on angular momentum with more emphasis on operators than 
Griffiths, you should consult one or more of the following: 

Ohanian Ch.7. 

Shankar (Second Edition) §12.5. If you want to read more about the importance 
of angular momentum in the theory of rotations you can read the material in 
Shankar surrounding §12.5. 

Problem Set 10 

1. Another view on Bell’s inequalities. [10 points] 

Let the singlet state stand for the entangled total-spin-zero state of two spins, and 
let a and b denote two unit vectors. Following the EPR logic consider the correlation 
coefficient C(a, b) that takes the average, over an ‘ensemble’ of singlet states, of the 
product of the measured spin of particle one along a and the measured spin of particle 
two along b: 

  4 
S(1) (2) 

C(a, b) ≡
a Sb

.
l2 av 

Since any value of measured spin can be only ±l/2, this ensemble average must range 
between minus one and plus one. 

Now consider three directions a, b, and c and the following quantity to be measured 

( )4 4 
S(1) (1) (1) 

S(1) g(a, b, c) ≡ − S 1 − S .
l2 a b 

l2 b c 

(i)
Note that all superscripts refer to particle one. In the sense of EPR all of the Sn are 
not operators but rather denote possible measured values. Thus for any unit vector 

(1) (1) 
n we have Sn Sn = l2/4 and the anticorrelations of singlets imply that one can use 

S(1) −S(2) = . 
n n 

1
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(a) Show that 
[ L

g(a, b, c)
av 

= C(a, b)− C(a, c) 

(b) Using the inequality
  [ L

  [g]av ≤ |g|
av 

where | . . . | denote absolute values, show that
  

  C(a, b)− C(a, c) − C(b, c) ≤ 1 (1) 

This is an inequality that must be obeyed by a good theory in the sense of EPR. 
(1) (2) 

(c) Turning to quantum mechanics, Sa and S
b are spin operators of the first 

and second particle, respectively, along the a and b unit vectors. Moreover, 
the coefficient C(a, b) is the expectation value of their operator product in the 
singlet state 

/ )4 
S(1) (2) 

C(a, b) ≡ 
a Sb . 

l2 

Prove that
 
C(a, b) = − cos θab ,
 

where θab is the angle between the vectors a and b. 

(d) Let a, b, c be coplanar vectors with θab = θbc = θ and θac = 2θ. Plot the left-
hand side of (1) as a function of θ and show that the inequality is violated for 
θ ≤ π/2. 

2. Beating the odds using entangled states. [10 points] 

Consider the entangled state |Ψ) of two spins given by 

1 ( )

|Ψ) = √ |+) ⊗ |+) + |−) ⊗ |−) (1) 
2

¯Given a state |ψ) = α|+) + β|−) we define |ψ) ≡ α∗|+)+ β∗|−). 

(a) Consider a spin state |va) of the first particle and a spin state |wb) of the sec­
ond particle. Show that the probability P (va, wb) of getting those states upon 
measurement on the entangled state is 

  2 
P (va, wb) = 1 

  v̄a|wb) (2) 
2

We now consider a game in which Alice and Bob, who are far away from each other 
and incommunicado, play a game against Charlie. The game uses bits, which are 
variables that can take two values: zero or one. In a given round of the game, Charlie 
supplies a bit x to Alice and a bit y to Bob. Alice does not know what bit Bob got, 
and Bob does not know what bit Alice got. Alice must use the bit x to output a bit 
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a(x) and Bob must use his bit y to output a bit b(y). Alice and Bob win the round 
against Charlie if 

a + b ≡ xy (mod 2) 

Thus, for example, if x = y = 1 the right hand side is one and winning requires a  = b 
(a = 0, b = 1 or a = 1, b = 0). If either x or y is zero, the right-hand side is zero, and 
winning works for a = b (either both one or both zero). A good strategy for winning 
is for Alice and Bob to output a = b = 1 (or zero) for all inputs x, y. The left-hand 
side is then zero and this will win for all cases except x = y = 1. Thus the probability 
of winning is then 3/4. 

(b) In a classical strategy Alice chooses a function a(x) for her output bit. She has 
four choices that can be represented by the functions {0, 1, x, 1−x}. Explain why. 
Similarly, Bob’s choice of a function b(y) runs over the possibilities {0, 1, y, 1−y}. 
For any choice they make, 

a(x) + b(y) ≡ c0 + c1x + c2y (mod 2) , 

with some constants c0, c1, and c2 that can take values zero or one. Show that 
there is no choice of these constants for which the right-hand side above equals 
xy (mod 2), thus giving a strategy that wins always. Explain why this result 
implies that no (classical) strategy has a winning probability bigger than 3/4. 

Now Alice and Bob device a quantum strategy using their shared entangled pair (1). 
Alice will make use a basis 

|v0 
x) ≡ cos
 xα

2 |+) + sin α
2 
x |−) ,
 

|v1 
x) ≡ − sin α

2 
xα
2 |−)
x |+) +
 cos
 .
 

Since the bit x takes two values, Alice actually has a couple of bases: one for x = 0, 
comprised by the two states above with α0 and another for x = 1, comprised by the 
two states above for α1. Similarly, Bob will use 

β β|wy) ≡0 cos
 |+)+ sin
 |−) ,
 y y 

2 2 

β β|w1 
y) ≡ − sin |+) +
 cos
 |−)
y y .


2 2 

Since y takes two values, Bob also has a couple of bases: one for y = 0, comprised 
by the two states above with β0 and another for y = 1, comprised by the two states 
above for β1. 

The quantum strategy is now as follows. For any given x Alice measures her entangled 
spin along the basis (|v0 

x), |v1 
x)). If she finds the spin along the first basis vector she 

outputs a = 0, if she finds the spin along the second basis vector she outputs a = 1. 
For a given y Bob measures his entangled spin along the basis (|wy), |wy)). If he finds 0 1 

the spin along the first basis vector he outputs b = 0, if he finds the spin along the 
second basis vector she outputs b = 1. The strategy requires fixing α0, α1, β0, and β1. 
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(c) Show that with the above strategy the probability P [ a = b | x, y ] that a is equal 
to b for input values x, y is given by 

P [ a = b | x, y ] = cos 2 1
2 (αx − βy) . 

(d) Find a formula for the probability P of winning in terms of the four unknown 
angles α0, α1, β0, and β1. If you get the right answer, you should find that 

2 π 1 1 
2 2 
√P
 ≃ 0.85355
 .
+
= cos = 

8 2 

for α0 = 0, α1 = π/2, and β0 = π/4, β1 = −π/4. This gives about 10% better 
chances of winning than classically. Note that in the quantum strategy the 
outputs a, b for a given x, y are not deterministic. 

3. Properties of the Angular Momentum Operators [20 points] 

Solve exercises one through seven in the Angular Momentum notes (Chapter 9). 

4. Orbital angular momentum does not have half-integer eigenvalues [10 points] 
Griffiths Problem 4.57, p. 197. 

5. A three-dimensional angular momentum in the two-dimensional oscillator 
[15 points]
 

In an earlier p-set we considered an isotropic two-dimensional harmonic oscillator
 
with operators (ax, a
† x) and (ay, a
† y). By introducing linear combinations
 

1 1 
aL = √ 

2
(ax + iay) , aR = √ 

2
(ax − iay) , 

as well as the definitions 

NL 
† = aLaL , NR 

† = aRaR , 

we found that the Hamiltonian H and the angular momentum Lz = x̂p̂y − ŷp̂x take 
the form 

H = lω

( ) (

NR + NL + 1 = lω a † † aL + 1
)


,
aR + a
R L

Lz =
 l

( ) (

NR −NL = l a † RaR − † aLaL
)


.
 

We are going to show that there is a “hidden” three-dimensional algebra of angular 
momentum here. The operators are going to be 

( )

Jz = αLz = α l NR −NL , 

† 
RaL ,J+ = β l a 
† 
LaR ,J− = β l a 

where α and β are (real) constants to be determined. Note that, as required, J
† + = J−. 



5 Physics 8.05, Quantum Physics II, Fall 2013 

(a) Determine the constants α and β by the condition that the operators above obey 
the algebra of angular momentum. 

(b) Show that all Ji’s commute with the Hamiltonian (they are conserved!). 

(c) Associated to this angular momentum there are states |j, m) with J2 = l2j(j+1) 
and Jz = lm. Show that the state (a † )n|0) is a state |j, m) with j = m = n/2. R

(d) Describe the full spectrum of states of the two-dimensional harmonic oscillator 
in terms of representations of the ‘hidden’ angular momentum. 

(e) Comment why, in retrospect, the constant α could not have been equal to one. 
This shows that the hidden angular momentum is really well hidden! 
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