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1 Topics 

The notion of symmetry in physics. Key concepts: • 

–	 Frame 

–	 Inertial frame 

–	 Transformation 

–	 Invariant 

–	 Invariance 

–	 Symmetry 

–	 Relativity 

Examples of possible symmetry: • 

–	 Translation 

–	 Rotation 

–	 Parity 

–	 Galilean 

–	 Lorentz 

–	 Diffeomorphism 

–	 Gauge 

We will study the symmetry of: • 

–	 Classical mechanics — both initial conditions (v, E, etc.) and 
laws 

–	 Electromagnetism — in particular 

∗	 The wave equation 

∗	 Observed properties of light — does speed depend on 
wavelength? On motion of source? On motion of observer 
(frame)? 

Key people: • 

–	 Galileo Galilei, 1564-1642 

–	 Emmy Noether, 1882-1935 

–	 Michaelson & Morley 
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2 Formula summary: transformations


Translation:• 
r� = r + Δr 
t� = t + Δt 

Rotation:• 

Parity• 

r� = Rr 
t� = t 

r� = −r 
t� = t 

Galilean:• 
r� = r − vt 
t� = t 

Lorentz: • 
x� = Λx, i.e., for v in x-direction, 

⎧
⎪⎪⎨ 

⎪⎪⎩

x� = γ(x − vt) 
y� = y 
z� = z

, 

t� = γ(t − vx/c2) 

1 
.γ ≡ �

1 − c

2v
2 



3 Symmetry in physics 

3.1 Glossary of key concepts 

Frame: A prescription for measuring the physical quantities (e.g.,• 
r, t) that appear in our equations (an operational definition of 
them). 

Inertial frame: A particular kind of frame in which Newton’s 1st • 
law holds. 

Transformation: The mathematical operation converting the • 
quantities measured in one frame into the quantities measured in 
another. To avoid confusion, we usually put primes on the quanti­
ties in one of the two frames. 

Invariant: A quantity or equation that is left unchanged by a • 
transformation. A quantity Q is invariant if Q� = Q. An equation 
is invariant if it stays true in the new frame (i.e., when you put 
primes on all quantities). 

Invariance: Being invariant. For example, the equations of clas­• 
sical mechanics are said to be Galilean invariant because they are 
invariant under Galilean transformations. 

Symmetry: In physics, essentially a synonym for invariance. • 

Relativity: Essentially a synonym for invariance and symmetry, • 
but usually restricted to the symmetries of spacetime. 

3.2 Invariance under translation 

No experiment within your lab can determine whether it’s been • 
shifted sideways. In other words, the laws of nature appear to be 
translationally invariant. 

Original frame: masses at r1 and r2. • 

GmM 
F = |r2 − r1|2


Primed frame: masses at r�1 ≡ r1 + a and r�2 ≡ r2 + a.
• 

GmM GmM GmM 
F � = = = = F |r2

� − r�1|2 |(r2 + a) − (r1 + a)|2 |r2 − r1|2 

We have time translationak invariance in time as well as in space. • 



3.3 Invariance under rotation 

No experiment within your spaceship can determine whether it’s • 
been rotated. In other words, the laws of nature appear to be 
rotationally invariant. 

If you’re not cool with 3×3 matrices, please read the matrix primer • 
handout. 

Primed frame: masses at r�1 ≡ Rr1 and r�2 ≡ Rr2• 

GmM GmM GmM 
F � = 

Rr2 − Rr1
2 

= 
R(r2 − r1) 2 

= 
2 

= F | | | | |r2 − r1|

Another example: Maxwell’s equations in vacuum imply • 

2E =
1 

Ë .� 
c2 

Since only differences in position and time enter, it’s translationally

invariant.

Here it’s infinitesimal differences (derivatives), above it was a finite

difference (r2 − r1).


• �2 is invariant under rotation (remember Gauss’ theorem) 

At MIT: • ⎛
⎝ 

⎞
⎠ . 

0 
0 
1 

1 ¨ E = E = 
c2 

Near Australia: • ⎛
⎝ 

⎞
⎠

0 
0 
−1 

1 ¨ E = E = . 
c2 

So both observer’s agree that Maxwell was right, i.e., the wave • 
equation is translationally and rotationally invariant. 



3.4 Invariance under reflection (parity)? 

Yes for all of classical physics • 

Considered self-evident and obvious • 

1956: Chen Ning Yang & Tsung-Dao Lee propose that weak in­• 
teractions violate parity; Chien-Shiung Wu demonstrates it with 
cobalt 60, Leon Lederman with accelerator. (Yang & Lee get 1957 
Nobel prize.) 

3.5 Symmetry is at the heart of modern physics 

Special relativity is all about so-called Lorentz symmetry. • 

General relativity is about so-called diffeomorphism symmetry. • 

Key topics in particle physics are C, P and T symmetry and com­• 
binations like CP and CPT symmetry. 

A cornerstone of particle physics is gauge symmetry • 

In 2007, the Large Hadron Collider at CERN will search for super­• 
symmetry. 



4	 The symmetry properties of 
classical mechanics 

Under what transformations are the laws of classical mechanics invari­

ant?

Answer: Galilean transformations.


4.1 Invariance under Galilean transformation 

Demo with colliding carts, ball. • 

So Newtonian mechanics appears to be invariant - let’s understand • 
exactly what the transformation is, and why this is so. 

Inertial frame definition (a = 0 if F = 0)• 

Are we in an inertial frame? (PS1) • 

Galilean transformation definition (between 2 inertial frames) • 

Definition of event: a 4D point (x, y, z, t). Examples? • 

• r� = r − vt 

Lengths invariant: Δr� ≡ r�2 − r�1 = (r2 − vt) − (r1 − vt) = Δr • 

But we must measure r� and r� at the same time! •	 1 2 

Which we can, since time is invariant and unambiguous: t� = t • 

4.2 Transforming velocity 

How does u transform under a Galilean transformation? • 

dr 
u ≡ 

dt 

u� ≡ 
d

dt

r
�
� 

= 
dt

d 
(r − vt) = 

d

dt 
r − v = u − v 

So velocities add/subtract as you’d expect: u� = u − v 

But what about the flashlight on the train? • 

4.3 Transforming acceleration 

du 
a ≡	

dt 

a� ≡ 
d

dt

u
�
� 

= 
dt

d 
(u − v) = 

d

dt 
u 

= a 

So acceleration is invariant. 



� 

4.4 Transforming F = ma 

Consider forces that depend on separation: • 

– Spring: F = k(x2 − x1) 

– Gravity: F = GmM 
2|r2−r1 |

They are invariant, since lengths are.


m is invariant
• 

Since F, a and m are all invariant, so is the equation F = ma. • 

So the physical law is invariant, but not the initial conditions! • 

4.5 Transforming energy & momentum 

Neither is invariant, since v isn’t. • 

But the conservation laws are invariant: E and p are conserved in • 
any frame (PS1).


Work-energy theorem:
• 
W = ΔKE,


where work defined as

x2 

W = Fdx. 
x1 

Proof: • 

x2 x2 x2
� � � 

dv 
W = Fdx = ma dx = m dx 

dtx1 x1 x1 

v2 v2
� 

dx 
� 

mv2
2 

2
1mv

= ΔKE. dv = m v dv == m −
2 2dtv1 v1 

Only assumption here was F = ma, which is invariant, so the 
work-energy theorem is also invariant. 

W and KE alone are not invariant. • 

4.6 Transforming trajectories 

Is the 3D shape of a trajectory not invariant? • 

No! Basket ball example: line in frame A is parabola in frame B. • 

4.7 Key Galilean non-invariants 
⎧

r� = r − vt⎨ 
u� = u − v ⎩ p� = p − mv 



Quantity Invariance 
Translational? Rotational? Gallilian? 

t N Y Y 
r N N N 
Δt Y Y Y 
Δr Y N Y 
|Δr|
d/dt 

Y 
Y 

Y 
Y 

Y 
Y 

�
�2 

v 

Y 
Y 
Y 

N 
Y 
N 

Y 
Y 
N 

p Y N N 
a Y N Y 
F Y N Y 
m Y Y Y 
Ekin Y Y N 
W Y Y N 
F = ma Y Y Y 
Newt. mechanics Y Y Y 
Electromagnetism Y Y N 



5	 The symmetry properties of 
electromagnetism 

Under what transformations are the laws of electromagnetism invariant? 
Let’s focus on a simple special case: the laws that govern the propagation 
of light. 

5.1 The classical wave equation 

Classical wave equation (8.03): • 

1 
E = 0.� 2E − 

cw 
2 

¨


For example, E could denote:


– One of the three component of the electric field 

– One of the three component of the magnetic field 

– Air density 

– Height of water surface (2D) 

– Deflection of guitar string (1D)


1D special case:
•	
d2E 1 d2E − 

w 
= 0. 

dx2 c2 dt2 

General solution (show on PS2): • 

y = Af(x − cwt) + Bf(x + cwt), 

for arbitrary smooth function f and constants A & B. 

More complicated in 3D, but wavefronts still propagate with speed • 
cw. 

5.2 Symmetry of the wave equation 

We learned that classical mechanics was invariant under Galilean • 
transformations.


The wave equation can be derived from classical mechanics.
• 

Question: is the classical wave equation invariant under Galilean trans­
formations? 

1. Yes 

2. No 

3. Yes, but only if wave speed cw � c 



5.3 Transforming the wave equation 

Apply Galilean transformation to 1D wave equation: • 

d2E 1 d2E 
dx2 

− 
c2 dt2 

= 0. 

Do this on PS2 - hints: • 

– x� = x + vt 

– t� = t 

– Use chain rule for derivatives: 

∂ ∂x� ∂ ∂t� ∂ ∂ 
= + = 

∂x ∂x ∂x� ∂x ∂t� ∂x� 
∂ ∂x� ∂ ∂t� ∂ ∂ ∂ 

= + = v + 
∂t ∂t ∂x� ∂t ∂t� ∂x� ∂t� 

– Work out 2nd derivatives too 

2
• Result: �

1 − 
v

c2 

� 
d2E

c

1 
2 

d2E − 2 
v d2E 

= 0.

dx�2 

− 
dt�2 c dx�dt�


Wave equation not invariant under Galilean transformation • 

Show on PS2: the new equation has solution •


y = Af(x − [c − v]t) + Bf(x + [c + v]t),


i.e., waves travel slower forward than backward.


Just what you’d expect for waves in a substance, “aether” (veloc­
• 
ities add).


How can this be consistent with the wave equation being derived
• 
from classical mechanics, which is Galilean invariant? 



5.4 Observed properties of speed of light 

Does speed depend on wavelength? No! • 

Does speed depend on motion of source? No! • 

Does speed depend on motion of observer (frame)? No! • 

For all three cases, let’s now look at the evidence. 

5.4.1 Does c depend on wavelength? 

Does light speed through glass depend on wavelength? • 

But what about light speed through vacuum? • 

Gamma-ray bursts provide great test • 

Gamma-ray bursts last a few seconds to minutes • 

Old speculations: nefarious nukes, civilization annihilation, nearby • 
neutron stars 

Recently shown to originate at cosmological distances (few billion • 
light years ∼ 1017 light-seconds).


Flash seen also at x-rays and optical wavelengths, all within of
• 
order a minute ∼ 102 seconds, so


Δt 102s
< = 10−15 . 
t ∼ 1017s


c = d/t, so relative speed variation with wavelength is
• 

Δc Δt < 10−15 . 
c 
≈ 

t ∼ 

Answer: No, at least not more than about 10−15c ≈ 300 nm/s. 



5.4.2 Does c depend on source motion? 

Does speed of a bullet depend on speed of rifle? • 

Does sound speed of a gun shot depend on speed of rifle? • 

Binary stars provide great test • 

If velocities add, then • 

d 
t1 =


c − v

d


t2 = 
c + v 

2dv d v v
Δt ≡ t1 − t2 = 

c2 − v2 
≈ 2 

c c 
= 2t

c 
≈ 200 years, say 

(for a pulsar in the Large Magellanic Cloud with v = 300 km/s, 
d = 100000 lightyears) 

But half an orbit takes only 2 days, say •


You’d see new “Doppler effect” ∝ a rather than v
•

2

You’d see things moving backward in time whenever a > c to­• d 
wards you 

Answer: No dependence on source motion observed (and should be 
dramatic). 

5.4.3 Does c depend on observer motion (frame)? 

No 1st order effect had been seen • 

Michelson-Morley experiment hammered it - let’s see how • 

Consider interferometer moving with velocity v w.r.t. aether and • 
compute round trip flight times parallel (t ) and perpendicular 
(t ) to v. 

�
⊥

For light traveling in direction ±v,
•


ct± = L� ± vt±


L
t = 

�
± 

cmpv 
L L 2L

t = t+ + t = 
� + 

� = 
� 
γ2 , s � − 

c − v c + v c 

where we have defined the quantity


1

.γ ≡ �

1 − c

2v
2 

For light traveling perpendicularly to v,• 

(ct /2)2 = 
�

L2 + (vt /2)2 ⊥ ⊥ ⊥

2L
t = ⊥ 

γ⊥ 
c 



•	 � �

The difference is • 

2L 2L
Δt ≡ t⊥ − t� = 

c 
⊥ 

γ − 
c 
� 
γ2


Rotating the interferometer by 90◦ changes this to
• 

Δt� =
2L

c 
⊥ 

γ2 − 
2L

c 
� 
γ,


i.e., changes it by an amount
• 

2L 2L 2L 2L L + L
Δt� − Δt = 

c 
⊥ 

γ2 − 
c 
� 
γ − 

c 
⊥ 

γ + 
c 
� 
γ2 = 2γ(γ − 1) � 

c 
⊥ 

. 

To lowest order in v/c, we have • 

1 � v �2 
γ 1 + ≈ 

2 c 

Δt� − Δt ≈ 
L� + 

c

L⊥ 
� v

c 

�2 
, 

Δt� − Δt � v �2 
. 

t 
≈ 

c 

v ≈ 30 km/s, so (v/c)2 ∼ 10−8 — tough to measure!
•


•	 But their L� + L⊥ = 11m was about 2 × 107 wavelengths λ ∼
500nm, and they could see fringe shifts as small as 0.01λ. 

But they saw no fringe shift at all! So c appears not to depend on • 
frame. 

5.5 Aether rescue attempts (see Resnick Table 1-2) 

Lorentz-Fitzgerald contraction: L contracts to L /γ. 

Ruled out by Kennedy & Thorndike (1932) using interferometer • 
with L = L� � ⊥ 

Aether drag hypothesis • 

Ruled out by stellar aberration • 

Also by light propagation in moving water (Fizeau 1851) • 

Emission theories (v depends on source speed) • 

Ruled out by binary stars (above) • 

Also ruled out by Michelson-Morley with extraterrestrial light • 

Also ruled out by measuring speed of γ-rays from CERN particle • 
decays 



We’ve seen that classical mechanics is invariant under Galilean trans­
formations but electromagnetism isn’t. 

Question: What is wrong? 

1. The idea that all inertial frames are equivalent 

2. Our theory of mechanics (8.01) 

3. Our theory electromagnetism (8.02) 

4. Nothing, because of Bohr’s complementarity principle 

6 What are we to make of this? 

Parity symmetry applied to some things, not others. • 

Is it the same with Galilean symmetry? • 

An experimental question: Is physics the same in all inertial • 
frames? 

A: Experiments suggest YES, both for mechanics and electromag­• 
netism 

A theoretical question: How describe this invariance mathe­• 
matically, i.e., 
what is the tranformation law that leaves physics invariant? 

Galilean transformation? Works for mechanics but fails for E&M • 

Lorentz transformation? Works for E&M (PS3) but fails for me­• 
chanics 

No transformation works for both E&M and mechanics • 

So at least one of the two must be wrong! • 

Changing E&M to be have Galilean invariance is experimentally • 
ruled out


So let’s try changing mechanics to be Lorentz invariant!
• 

BINGO! Not only OK with old experiments, but triumphed with • 
new ones. 



7 Derivation of the Lorentz Transformation 

7.1 Battle Plan 

We’ll follow Einstein’s approach and derive everything from two postu­
lates: 

1. The laws of physics are the same in all inertial frames. 

2. The speed of light is same in all inertial frames. 

Comments: 

2 follows from 1 if we consider the speed of light one of the laws of • 
physics.


Einstein denoted inertial frame invariance “special relativity”
• 

As opposed to “general relativity”, the generalization to non-inertial • 
frames. 

7.2 Inertial frames done carefully: rods & clocks 

Key concept: the event, a point in spacetime. • 

Define coordinate system with three perpendicular rigid measuring • 
rods


Define time with local clocks
• 

Synchronize clocks with light pulses • 

Minkowski diagram of synchronization procedure • 

Minkowski diagram basics • 

N.B. Don’t confuse frame simultaneity with seeing things simul­• 
taneously: If you saw SN 1987A and a camera flash at the same 
time, did these two flashes go off simultaneously in your inertial 
frame? 

The time t in an inertial frame is also called bookkeeper’s time. • 
Don’t confuse with the time when you see something happen. 

1st shocker: Simultaneity is relative! Must abandon t� = t. • 



7.3 Transformation derivation, part I 

Let’s define 4-vectors that have units of length:• 

x = 

⎛ 

⎜⎜⎝ 

x 
y 
z 
ct 

⎞ 

⎟⎟⎠ . 

In this course, we’ll often use units were c = 1 (time measured in • 
meters).


Given v, the new 4-vector x� is some function of x - which function?
• 

Translational invariance implies linearity:• 

x� = Λ(v)x + x0,


for some offset x0 and some Lorentz matrix


Λ(v) = 

⎛ 

⎜⎜⎝ 

Λ11 Λ12 Λ13 Λ14 

Λ21 Λ22 Λ23 Λ24 

Λ31 Λ32 Λ33 Λ34 

Λ41 Λ42 Λ43 Λ44 

⎞ 

⎟⎟⎠ . 

Why? Because • 
x�2 − x�1 = Λ(v)(x2 − x1) 

for linear relation — for any nonlinear (rigorously, non-affine) re­
lation, the difference (x�2 − x1

� ) won’t depend only on the difference 
(x2 − x1). 

Notation warning: book uses notation where 4th coordinate is t,• 
not ct, so there things get uglier and not all Λ-coefficients are 
dimensionless. 

Notation warning: book uses a, we use Λ since it’s more standard • 
these days.


Velocity sign convention: velocity of primed frame in unprimed
• 
frame is v, so velocity of unprimed frame in primed frame is −v 

WLOG no translation: x0 = 0 (we can always translate later), so • 
simply need to find the 4 × 4 matrix Λ(v)


(WLOG=without loss of generality.)
• 

WLOG no rotation (we can always rotate later), so v = 0 case • 
gives identity matrix: 

⎛ 

⎜⎜⎝ 

1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 1 

⎞ 

⎟⎟⎠ Λ(0) = . 

WLOG v in x-direction, since we can always rotate to make it so • 



Our transformation respects rotational symmetry around the x­• 
axis, so neither x� nor t� can depend on y or z, i.e., we have Λ12 = 
Λ13 = Λ42 = Λ43 = 0. 

The x-axis gets transformed into • 
⎛ 

⎜⎜⎝ 

Λ11 0 0 Λ14 

Λ21 Λ22 Λ23 Λ24 

Λ31 Λ32 Λ33 Λ34 

Λ41 0 0 Λ44 

⎛ 

⎜⎜⎝ 

⎞ 

⎟⎟⎠ 

1 
0 
0 
0 

⎞ 

⎟⎟⎠ = 

⎛ 

⎜⎜⎝ 

Λ11 

Λ21 

Λ31 

Λ41 

⎞
⎟⎟ ,⎠ 

so we have Λ21 = Λ31 = 0 since, by construction, the spatial part 
of the x-axis coincides continuously with the x�-axis. 

Consider events with x = t = 0. They get transformed into • 
⎛ 

⎜⎜⎝ 

x� 

y� 

z� 

t� 

⎞ 

⎟⎟⎠ = 

⎛ 

⎜⎜⎝ 

Λ11 0 0 Λ14 

0 Λ22 Λ23 Λ24 

0 Λ32 Λ33 Λ34 

Λ41 0 0 Λ44 

⎛ 

⎜⎜⎝ 

⎞ 

⎟⎟⎠ 

0 
y 
z 
0 

⎞ 

⎟⎟⎠ = 

⎛ 

⎜⎜⎝ 

0 
Λ22y + Λ23z 

.Λ32y + Λ33z 
0 

So all events in this two-dimensional (y, z)-plane are simultaneous 
in both frames (with t� = t = 0), making it trivial to compare mea­
suring rods in the two frames since their two endpoints can coincide 
in space and time. This implies that the 2 × 2 transformation ma­
trix in this plane must be the identity matrix, i.e., Λ23 = Λ32 = 0 
and Λ22 = Λ33 = 1. 

An object moving uniformly with x = vt in the unprimed frame • 
remains at rest at the origin in the primed frame, so 
⎛ 

⎜⎜⎝ 

Λ11 0 0 Λ14 

0 1 0 Λ24 

0 0 1 Λ34 

Λ41 0 0 Λ44 

⎛ 

⎜⎜⎝ 

⎞ 

⎟⎟⎠ 

vt 
0 
0 
ct 

⎞ 

⎟⎟⎠ = 

⎛ 

⎜⎜⎝ 

Λ11vt + Λ14ct 
Λ24ct 
Λ34ct 

Λ41vt + Λ44ct 

⎞ 

⎟⎟⎠ = 

⎛ 

⎜⎜⎝ 

0 
0 
0 
ct� 

so we have Λ24 = Λ34 = 0 and


Λ14 = −βΛ11,


where we’ve defined

v 
.β ≡ 

c 

(When we do research using relativity, we normally use units where • 
c = 1, so that we can write simply β = v.)


Progress update:
• 

Λ(v) = 

⎛ 

⎜⎜⎝ 

Λ11 

0 
0 
1 

0 
0 

−βΛ11 

0 
0 0 1 0 

Λ41 0 0 Λ44 

⎞ 

⎟⎟⎠ , (1) 

⎞ 

⎟⎟⎠

⎞ 

⎟⎟⎠ 

i.e. ⎛ 

⎜⎜⎝ 

x� 

y� 

z� 

ct� 

⎞ 

⎟⎟⎠ = 

⎛ 

⎜⎜⎝ 

⎛ 

⎜⎜⎝ 

⎞ 

⎟⎟⎠ 

⎞ 

⎟⎟⎠ = 

⎛ 

⎜⎜⎝ 

Λ11 0 0 −βΛ11 

0 
Λ11(x − vt) 

y 
z 

Λ41x + Λ44ct 

x 
y 
z 

0 1 0 
.0 0 1 0 

Λ41 0 0 Λ44 ct 
(2) 

⎞ 

⎟⎟⎠



7.4 Galileo and Einstein part ways 

So far, we haven’t assumed anything about the speed of light, so our

results must still include both the Galilean transform and the Lorentz

transform.

Let’s do the Galilean first:


Assuming that t� = t gives Λ41 = 0 and Λ44 = 1. • 

Assuming that measuring rods have the same length in both frames • 
implies Λ11 = 1. 

This implies the Galilean transformation matrix: • 

G(v) = 

⎛ 

⎜⎜⎝ 

1 
0 

0 
1 

0 −β 
0 0 

0 0 1 0 
0 0 0 1 

⎞ 

⎟⎟⎠ . 

7.5 Transformation derivation, part II 

Let’s revert to equation (1) and assume that light has same speed c in 
both frames. 

Imagine a light flash created at x = (0, 0, 0, 0) expanding with • 
speed c in all directions, creating an expanding spherical wavefront 
of radii ct and ct� in the two frames. This light cone (a cone in 4D 
spacetime) is described by 

x 2 + y 2 + z 2 − (ct)2 = 0 (3) 

and 
x�2 + y�2 + z�2 − (ct�)2 = 0 (4) 

in the two frames. 

Substiting equation (2) into the last equation gives • 

Λ2 (x − vt)2 + y 2 + z 2 − (Λ41x + Λ44ct)2 = 011

Rearranging terms: • 

(Λ2 )x 2+y 2+z 2 )(ct)2 −2(βΛ2 +Λ41Λ44)ctx = 0.11−Λ2 −(Λ44−β2Λ2 
1141 11

So the light cone is where this quadratic polynomial in x, y, z and • 
t vanishes.


This polynomial will vanish on the same cone as the polynomial of
• 
equation (3) only if the two polynomials are identical, i.e., if 

⎧
⎨ 

⎩ 

Λ2 
41 = 1,11 − Λ2 

Λ2 
11 = 1,44 − β2Λ2 

βΛ2 + Λ41Λ44 = 0.11 



Solve: • 
⎧
⎨ 

⎩ 

Λ2 = Λ2 
11 − 1, 

Λ2 = β2Λ2 + 1, 
41 

44 11 
0 = β2Λ4 Λ2 = ... = 1 − (1 − β2)Λ1111 − Λ2 

4441

Solution: ⎧
⎪⎪⎨ 

⎪⎪⎩ 

Λ11 = γ, 
Λ44 = γ, 
Λ41 = −βγ, , 

Λ14 = −βγ, 

where we have defined


1 1

γ ≡ �

1 − β2 
= �

1 − 
2 
. 

v
c2 

(We don’t care about the 2nd solution with Λ11 = −γ, which • 
corresponds to flipping the sign of t and x, “TP”.)


We’re done! The Lorentz transformation is
• 
⎛ 

⎜⎜⎝ 

⎞ 

⎟⎟⎠

γ 
0 

0 
1 

0 
0 

−γβ 
0 

0 0 1 0 
−γβ 0 0 γ 

Λ(v) = , 

i.e., 
⎛ 

⎜⎜⎝

x� 

y� 

z� 

ct� 

⎞ 

⎟⎟⎠ = 

⎛ 

⎜⎜⎝ 

⎛ 

⎜⎜⎝ 

⎞ 

⎟⎟⎠ 

⎞ 

⎟⎟⎠ 

⎛ 

⎜⎜⎝ 

0 0 γ(x − βct) 
y 
z 

γ −γβ 
0 

x 
y 
z 

0 1 0 = .0 0 1 0 
−γβ 0 0 γ γ(ct − βx)ct 

Compare to Einstein’s 1905 paper • 

⎞ 

⎟⎟⎠



�

�

�

�

�

7.6 The inverse Lorentz transform 

Since x� = Λ(v)x and x = Λ(−v)x�, we get the consistency re­• 
quirement 

x = Λ(−v)x� = Λ(−v)Λ(v)x 

for any event x, so we must have Λ(−v) = Λ(v)−1, the matrix 
inverse of Λ(v). 

Is it? • 

Λ(−v)Λ(v) = 

⎛ 

⎜⎜⎝ 

⎛ 

⎜⎜⎝ 

⎞ 

⎟⎟⎠ 

⎞ 

⎟⎟⎠ = 

γ 0 
0 1 0 0 

0 γ 0 0 
0 1 0 

−γβ 
0 

0 0 1 0 

1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 1 

γβ 

,0 0 1 0 
γβ 0 0 γ −γβ 0 0 γ 

i.e., yes! 

7.7 Spacetime transformation summary 

Translation:• 
r� = r + Δr 
t� = t + Δt 

Rotation:• 

Parity• 

r� = Rr 
t� = t 

r� = −r 
t� = t 

Galilean “boost”:• 
r� = r − vt 
t� = t 

Combined:• 
r� = ±Rr + Δr − vt 
t� = t + Δt 

Lorentz “boost”: • 

x� = Λx, i.e., for v in x-direction, 
⎧
⎪⎪⎨ 

⎪⎪⎩ 

x� = γ(x − vt)

y� = y

z� = z

t� = γ(t − vx/c2)


Poincaré: • 
x� = Λx + x0 

This is the most general spacetime symmetry transformation of 
special relativity, with 10 parameters: x0 can give 3 independent 
translations in space and 1 translation in time), Λ can give 3 inde­
pendent rotations, 3 independent boosts and also reversal of space 
and/or time. 

⎞ 

⎟⎟⎠

⎛ 

⎜⎜⎝ 


