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Topics 

Lorentz transformations toolbox • 

– formula summary 

– inverse 

– composition (v addition) 

– boosts as rotations 

– the invariant 

– wave 4-vector 

– velocity 4-vector 

– aberration 

– Doppler effect 

– proper time under acceleration 

– calculus of variations 

– metrics, geodesics 

Implications• 

– Time dilation 

– Relativity of simultaneity, non-syncronization 

– Length contraction 

– c as universal speed limit 

– Rest length, proper time 



� 

Formula summary: transformation toolbox 

Lorentz transformation: • 
⎛ 

⎜⎜⎝ 

⎞ 

⎟⎟⎠ , 

γ 
0 

0 
1 

0 
0 

−γβ 
0 

0 0 1 0 
−γβ 0 0 γ 

Λ(x̂v) = 

i.e., ⎛ 

⎜⎜⎝ 

x� 

y� 

z� 

ct� 

⎞ 

⎟⎟⎠ = 

⎛ 

⎜⎜⎝ 

γ(x − βct) 
y 
z 

γ(ct − βx) 

⎞ 

⎟⎟⎠ . 

This implies all the equations below, derived on the following pages:• 

Inverse Lorentz transformation: • 

Λ(v)−1 = Λ(−v)


Addition of parallel velocities:
• 
� 

v1 + v2Λ(v1)Λ(v2) = Λ 
1 + v1v2 

2c

Addition of arbitrary velocities: • 

u� + v 
ux = x 

v x1 + u
�
2c

2vu�y 

�
1 − c2 

uy = 
v x1 + u
�
2c

2vu�z 

�
1 − c2 

uz = 
v x1 + u
�
2c

Boosts as generalized rotations: • 

Λ(−v) = 

⎛ 

⎜⎜⎝ 

cosh η 0 0 sinh η 
0 1 0 0 
0 0 1 0 

sinh η 0 0 cosh η 

⎞ 

⎟⎟⎠ , 

where η ≡ tanh−1 β


All Lorentz matrices Λ satisfy
• 

ΛtηΛ = η, 

where the Minkowski metric is 

η = 

⎛ 

⎜⎜⎝ 

−1 0 0 0 
0 −1 0 0 

00 

⎞ 

⎟⎟⎠ , 

0 0 
−1 0 
0 1 



� � 

All Lorentz transforms leave the interval • 

Δs 2 ≡ ΔxtηΔx = Δx 2 + Δy 2 + Δz 2 − (cΔt)2 

invariant 

Wave 4-vector • 

K ≡ γu 

⎛ 

⎜⎜⎝ 

kx 

ky 

kz 

w/c 

⎞ 

⎟⎟⎠ , 

Velocity 4-vector • 
⎛ 

⎜⎜⎝ 

ux 

uy 

uz 

⎞ 

⎟⎟⎠
1

U ≡ γu , γu ≡ �
1 − 

2u
2cc

Aberration: •	

cos θ� = 
cos θ − β 

1 − β cos θ 

Doppler effect: • 
ω� = ωγ(1 − β cos θ) 

Formula summary: other 

Proper time interval: • 

tB |ṙ(t)|2 
Δτ = 1 − dt 

c2 
tA 

Euler-Lagrange equation:• 

∂f d ∂f 
∂x 

− 
dt ∂ẋ

= 0 



Implications: time dilation 

In the frame S, a clock is at rest at the origin ticking at time • 
intervals that are Δt =1 seconds long, so the two consecutive ticks 
at t = 0 and t = Δt have coordinates 

x1 = 

⎛ 

⎜⎜⎝ 

0 
0 
0 
0 

⎞ 

⎟⎟⎠ , x2 = 

⎛ 

⎜⎜⎝ 

⎞ 

⎟⎟⎠ . 

0 
0 
0 

cΔt 

In the frame S�, the coordinates are • 
⎛ 

⎜⎜⎝ 

⎛ 

⎜⎜⎝ 

⎞ 

⎟⎟⎠ 

⎞ 

⎟⎟⎠ 

⎛ 

⎜⎜⎝ 

⎞ 

⎟⎟⎠ , 

γ 0 0 
0 1 0 

−γβ 
0 

0 0 1 0 

0 
0 
0 
0 

0 
0 
0 
0 

=x�1 = 

0 0−γβ γ ⎛ 

⎜⎜⎝ 

⎛ 

⎜⎜⎝ 

⎞ 

⎟⎟⎠ 

⎞ 

⎟⎟⎠ 

⎛ 

⎜⎜⎝ 

⎞ 

⎟⎟⎠ 

0 0 0 
0 
0 

cΔt 

−γvΔt 
0 
0 

γcΔt 

γ −γβ 
00 1 0 

=x�2 = 0 0 1 0 
−γβ 0 0 γ 

So in S�, the clock appears to tick at intervals Δt� = γΔt > Δt,• 
i.e., slower! (Draw Minkowski diagram.) 



Time dilation, cont’d 

The light clock movie says it all: • 
http : //www.anu.edu.au/Physics/qt/ 

Cosmic ray muon puzzle • 

– Created about 10km above ground 

– Half life 1.56 × 10−6 second 

– In this time, light travels 0.47 km 

– So how can they reach the ground? 

– v ≈ 0.99c gives γ ≈ 7 

– v ≈ 0.9999c gives γ ≈ 71 

Leads to twin paradox • 



Consider two frames in relative motion. For t = 0, the Lorentz 
transformation gives x� = γx, where γ > 1. 

Question: How long does a yard stick at rest in the unprimed frame 
look in the primed frame? 

1. Longer than one yard 

2. Shorter than one yard 

3. One yard 

Implications: relativity of simultaneity 

Consider two events simultaneous in frame S: • 

x1 = 

⎛ 

⎜⎜⎝ 

⎞ 

⎟⎟⎠ = 

⎛ 

⎜⎜⎝ 

⎞ 

⎟⎟⎠

0 
0 
0 
0 

L 
0 
0 
0 

, x2 . 

In the frame S�, they are • 
⎛ 

⎜⎜⎝ 

⎛ 

⎜⎜⎝ 

⎞ 

⎟⎟⎠ 

⎞ 

⎟⎟⎠ 

⎛ 

⎜⎜⎝ 

0 
0 
0 
0 

⎞ 

⎟⎟⎠ 

γ 0 0 
0 1 0 

0 
0 
0 
0 

−γβ 
0 =x�1 = 0 0 1 0 

0 0−γβ γ ⎛ 

⎜⎜⎝ 

⎛ 

⎜⎜⎝ 

⎞ 

⎟⎟⎠ 

⎞ 

⎟⎟⎠ 

⎛ 

⎜⎜⎝ 

⎞ 

⎟⎟⎠ 

0 0γ −γβ 
0 

L 
0 
0 
0 

γL 
0 
0 

−γβ �L 

0 1 0 
=x�2 = 0 0 1 0 

−γβ 0 0 γ 

So in S�, the second event happened first! • 

So S-clocks appear unsynchronized in S� - those with larger x run • 
further ahead 



Implications: length contraction 

Trickier than time dilation, opposite result (interval appears shorter,• 
not longer)


In the frame S, a yardstick of length L is at rest along the x-axis
• 
with its endpoints tracing out world lines with coordinates 

x1 = 

⎛ 

⎜⎜⎝ 

0 
0 
0 

⎞ 

⎟⎟⎠ , x2 = 

⎛ 

⎜⎜⎝ 

L 
0 
0 

⎞ 

⎟⎟⎠ . 

ct ct 

In the frame S�, these world lines are • 

= 

⎛ 

⎜⎜⎝ = 

⎛ 

⎜⎜⎝ 

⎞ 

⎟⎟⎠ 

⎛ 

⎜⎜⎝ 

⎞ 

⎟⎟⎠ 

⎞ 

⎟⎟⎠ = 

⎛ 

⎜⎜⎝ 

⎞ 

⎟⎟⎠ 

0 0 0 
0 
0 

x�1 γ −γβ 
0 

−γβct 
0 
0 

0 1 0y1
�

x�1 0 0 1 0z1
�

0 0ct�1 −γβ γ γctct 

= 

⎛ 

⎜⎜⎝ 

An observer in measures length as at the same time� � � �S t−x x ,2 1• 
- not at the same time t. 

Let’s measure at t� = 0. • 

t� = 0 when t = 0 — at this time, x� = 0 • 1 1 

t� = 0 when ct = βL - at this time, x� = γL − γβ2L = L/γ• 2 2 

So in S�-frame, measured length is L� = L/γ, i.e., shorter • 

Let’s work out the new world lines of the yard stick endpoints • 

• x�1 + βct1
� = 0, so left endpoint world line is 

x� = −vt�1 1 

x�2 − γL + β(ct� + γβL) = 0, so right endpoint world line is • 2 

L 
x� = γL − β(ct� + γβL) = 

γ 
− vt�2 2 2 

Length in S� is • 

⎛ 

⎜⎜⎝ = 

⎞ 

⎟⎟⎠ 

⎛ 

⎜⎜⎝ 

⎞ 

⎟⎟⎠ 

⎞ 

⎟⎟⎠ 

⎛ 

⎜⎜⎝ 

0 0x�2 γ −γβ 
0 

L γL − γβct 
0 
0 

0 1 0 0y2
�

x�2 = 0 0 1 0 0z2
�

0 0ct�2 −γβ γ γct − γβLct 

L L 
x�2 − x�1 = + v(t1

� − t�2) = 
γ γ 

since both endpoints measured at same time (t�1 = t2
� ) 

Draw Minkowski diagram of this • 

⎞ 

⎟⎟⎠ 



Superluminal communication? 

Velocity addition formula shows that it’s impossibe to accelerate • 
something past the speed of light 

But could there be another way, say a type of radiation that moves • 
faster than light?


Can an event A influence another event B at spacelike separation
• 
(hence transmitting information faster than the speed of light)? 

There is another frame where B happened before A! (PS3) • 

Draw Minkowski diagram of this • 

By inertial frame invariance, B can then send a signal that arrives • 
back to A before she sent her initial signal, telling her not to send 
it. 

Implication: c isn’t merely the speed of light, but the limiting speed • 
for anything 

“Everything is relative” — or is it? 

All observers agree on rest length • 

All observers agree on proper time • 

All observers (as we’ll see later) agree on rest mass • 



Transformation toolbox: the inverse Lorentz 
transform 

Since x� = Λ(v)x and x = Λ(−v)x�, we get the consistency re­• 
quirement 

x = Λ(−v)x� = Λ(−v)Λ(v)x 

for any event x, so we must have Λ(−v) = Λ(v)−1, the matrix 
inverse of Λ(v). 

Is it? • 

Λ(−v)Λ(v) = 

⎛ 

⎜⎜⎝ 

γ 0 0 γβ 
0 1 0 0 
0 0 1 0 

γβ 0 0 γ 

⎛ 

⎜⎜⎝ 

⎞ 

⎟⎟⎠ 

γ 0 0 
0 1 0 

−γβ 
0 

0 0 1 0 
−γβ 0 0 γ 

⎞ 

⎟⎟⎠ = 

⎛ 

⎜⎜⎝ 

⎞ 

⎟⎟⎠

1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 1 

, 

i.e., yes! 

Transformation toolbox: velocity addition 

If the frame S� has velocity v1 relative to S and the frame S�� has • 
velocity v2 relative to S� (both in the x-direction), then what is 
the speed v3 of S�� relative to S? 

x� = Λ(v1)x and x�� = Λ(v2)x� = Λ(v2)Λ(v1)x, so • 

Λ(v3) = Λ(v2)Λ(v1), i.e. • 
⎛ 

⎜⎜⎝ 

γ3 0 0 
0 1 0 

−γ3β3 

0 
0 0 1 0 

−γ3β3 0 0 γ3 

⎞ 

⎟⎟⎠ = 

⎛ 

⎜⎜⎝ 

⎛ 

⎜⎜⎝ 

⎞ 

⎟⎟⎠ 

γ2 0 0 
0 1 0 

−γ2β2 

0 
0 0 1 0 

γ1 0 0 
0 1 0 

−γ1β1 

0 
0 0 1 0 

0 0 0 0 ⎛ 

⎜⎜⎝ 

−γ2β2 

1 + β1β2 0 0 −[β1 + β2] 
0 1 0 0 

γ2 −γ1β1 γ1 ⎞ 

⎟⎟⎠ = γ1γ2 0 0 1 0

−[β1 + β2] 0 0 1 + β1β2


Take ratio between (1, 4) and (1, 1) elements: • 

Λ(v3)41 β1 + β2
β3 = − 

Λ(v3)11 
= 

1 + β1β2 
. 

In other words,• 
v1 + v2 

v3 = .
1 + v1v2 

2c

⎞ 

⎟⎟⎠ 



Transformation toolbox: 
perpendicular velocity addition 

Here’s an alternative derivation of velocity addition that easily • 
gives the non-parallel components too (but 4-vector method on 
next page is simpler) 

If the frame S� has velocity v in the x-direction relative to S and • 
a particle has velocity u� = (ux

� , uy
� , uz

� ) in S�, then what is its 
velocity u in S? 

Applying the inverse Lorentz transformation • 

x = γ(x� + vt�)

y = y�


z = z�


t = γ(t� + vx�/c2)


to two nearby points on the particle’s world line and subtracting 
gives 

dx = γ(dx� + vdt�)

dy = dy�


dz = dz�


dt = γ(dt� + vdx�/c2).


dx = γ(dx� + vdt�)

dy = dy�


dz = dz�


dt = γ(dt� + vdx�/c2).


Answer: • 

dx�dx γ(dx� + vdt�) dt� + v u�x + v 
ux = = = = 

γ(dt� + vdx� v dx� v xdt 
c2 ) 1 + c dt� 1 + uc

�
22 

γ−1 dy� u�
�

1 − v
2 

2dy dy� dt� y c
uy = = 

γ(dt� + vdx� = 
v dx� = 

vdt 
c2 ) 1 + c dt� 1 + uc

�
2 

x
2 

2v
γ−1 dz� u�

�
1 − 2dz dz� dt� z c

uz = = 
γ(dt� + vdx� = 

v dx� = 
vdt 

c2 ) 1 + c2 dt� 1 + uc
�
2 

x 



�

Transformation toolbox: velocity as a 4-vector 

For a particle moving along its world-line, define its velocity 4­• 
vector 

= γu 

⎛ 

⎜⎜⎝ 

ux 

uy 

uz 

c 

⎞ 

⎟⎟⎠ , 
dX

U ≡ 
dτ 

where 
1 

γu 
2

≡ �
1 − u2c

This is the derivative of its 4-vector x w.r.t. its proper time τ , since • 
dτ = dt/γu


U� = ΛU:
• 
dX� dΛX dX

U� = = = Λ = ΛU,
dτ � dτ dτ


since the proper time interval dτ is Lorentz-invariant


This means that all velocity 4-vectors are normalized so that • 

UtηU = −c 2 . 

This immediately gives the velocity addition formulas: • 
⎛ 

⎜⎜⎝ 

⎞ 

⎟⎟⎠ 

⎛ 

⎜⎜⎝ 

⎛ 

⎜⎜⎝ 

⎞ 

⎟⎟⎠ 

γ 0 0 γβ 
0 1 0 0 
0 0 1 0 

γβ 0 0 γ 

u�x 
u�y 
u�z 

ux 

uy 

uz 
= Λ(−v)U = γuU� = γu� 

c 

= γu� 

⎛
⎜⎜⎜⎝ 

⎞
⎟⎟⎟⎠ 

,= 

⎛ 

⎜⎜⎝ 

⎞ 

⎟⎟⎠ 

ux+v 
v/c2γ[ux + v]γu 1+ux

uy /γ 
1+uxv/c2 

uz /γ 
1+uxv/c2 

γuuy 

γuyz 

γuγ[1 + uc
xv ]c2 c 

where γu� = γuγ 
�
1 + uxv 

2 this last equation follows from the— c
fact that the 4-vector normalization in Lorentz invariant, i.e.,u�tηu� = 
utηu = −1. 

The 1st 3 components give the velocity addition equations we de­• 
rived previously. 

⎞ 

⎟⎟⎠ 

c 



� 

Transformation toolbox: 
boosts as generalized rotations 

A “boost” is a Lorentz transformation with no rotation • 

A rotation around the z-axis by angle θ is given by the transfor­• 
mation ⎛ 

⎜⎜⎝ 

cos θ sin θ 0 0 
− sin θ 

0 
cos θ 

0 
0 
1 

0 
0 

0 0 0 1 

⎞ 

⎟⎟⎠ 

We can think of a boost in the x-direction as a rotation by an • 
imaginary angle in the (x, ct)-plane: 

Λ(−v) = 

⎛ 

⎜⎜⎝ 

γ 0 0 γβ 
0 1 0 0 
0 0 1 0 

γβ 0 0 γ 

⎞ 

⎟⎟⎠ = 

⎛ 

⎜⎜⎝ 

cosh η 0 0 sinh η 
0 1 0 0 
0 0 1 0 

sinh η 0 0 cosh η 

⎞ 

⎟⎟⎠ , 

where η ≡ tanh−1 β is called the rapidity. 

Proof: use hyperbolic trig identities on next page• 

Implication: for multiple boosts in same direction, rapidities add • 
and hence the order doesn’t matter 

Hyperbolic trig reminders 

ex + e−x 

cosh x = 
2 

ex − e−x 

sinh x = 
2 

ex − e−x 

tanh x = 
ex + e−x 

cosh−1 x = ln(x + 
�

x2 − 1) 

sinh−1 x = ln(x + 
�

x2 + 1) 
1 

� 
1 + x

tanh−1 x = ln
2 1 − x 

cosh tanh−1 x = √
1

1 

− x2 

sinh tanh−1 x = √
1 

x 

− x2 

cosh2 x − sinh2 x = 1 



�

The Lorentz invariant 

The Minkowski metric • 

η = 

⎛ 

⎜⎜⎝ 

1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 −1 

⎞ 

⎟⎟⎠ 

is left invariant by all Lorentz matrices Λ:


ΛtηΛ = η


(indeed, this equation is often used to define the set of Lorentz ma­
trices — for comparison, ΛtIΛ = I would define rotation matrices) 

Proof: Show that works for boost along x-axis. Show that works • 
for rotation along y-axis or z-axis. General case is equivalent to 
applying such transformations in succession. 

All Lorentz transforms leave the quantity• 

xtηx = x 2 + y 2 + z 2 − (ct)2


invariant


Proof:
• 
x�tηx� = (Λx)tη(Λx) = xt(ΛtηΛ)x = xtηx 

(More generally, the same calculation shows that xtηy is invariant)• 

•	 So just as the usual Euclidean squared length |r|2 = r · r = rtr = 
rtIr of a 3-vector is rotaionally invariant, the generalized “length” 
xtηx of a 4-vector is Lorentz-invariant. 

It can be positive or negative • 

For events x1 and x2, their Lorentz-invariant separation is defined • 
as 

Δσ2	 2 ≡ ΔxtηΔx = Δx 2 + Δy 2 + Δz − (cΔt)2


A separation Δσ2 = 0 is called null
• 

A separation Δσ2 > 0 is called spacelike, and • 

Δσ ≡
√

Δσ2 

is called the proper distance (the distance measured in a frame 
where the events are simultaneous) 

A separation Δσ2 < 0 is called timelike, and • 

Δτ ≡ −Δσ2 

is called the proper time interval (the time interval measured in a 
frame where the events are at the same place) 

More generally, any 4-vector is either null, spacelike of timelike. • 

The velocity 4-vector U is always timelike. • 



Transforming a wave vector 

A plane wave • 

E(x) = sin(kxx + ky y + kzz − ωt) (1) 

is defined by the four numbers 

K ≡ 

⎛ 

⎜⎜⎝ 

kx 

ky 

kz 

ω/c 

⎞ 

⎟⎟⎠ . 

If the wave propagates with the speed of light c (like for an electro­• 
magnetic or gravitational wave), then the frequency is determined

by the 3D wave vector (kx, ky , kz) through the relation ω/c = k,


where k ≡ 
�

k2 + k2 + k2

x y z 

How does the 4-vector K transform under Lorentz transforma­• 
tions? Let’s see. 

Using the Minkowski matrix, we can rewrite equation (1) as • 

E(X) = sin(KtηX). 

Let’s Lorentz transform this: X X�, K K�. Using that • 
X� = ΛX, let’s determine K�. 

→ → 

E� = sin(K�tηX�) = sin(K�tηΛX) = sin[(Λ−1K�)t(ΛtηΛ)X] = sin[(Λ−1K�)tηX]. 

This equals E if Λ−1K� = K, i.e., if the wave 4-vector transforms • 
just as a normal 4-vector: 

K� = ΛK 

This argument assumed that E� = E. Later we’ll see that the • 
electric and magnetic fields do in fact change under Lorentz trans­

forms, but not in a way that spoils the above derivation (in short,

the phase of the wave, KtηX, must be Lorentz invariant)


So a plane wave K in S is also a plane wave in S�, and the wave • 
4-vector transforms in exactly the same way as X does. 



Aberration and Doppler effects 

Consider a plane wave propagating with speed c in the frame S: • 

K = k 

⎛ 

⎜⎜⎝ 

sin θ cos φ

sin θ sin φ


cos θ

1


⎞ 

⎟⎟⎠ , 

where ck is the wave frequency and the angles θ and φ give the 
propagation direction in polar coordinates. 

Let’s Lorentz transform this into a frame S� moving with speed v • 
relative to S in the z-direction: k� = Λk, i.e., 

⎛ 

⎜⎜⎝ 

sin θ� cos φ� 

sin θ� sin φ� 

cos θ� 

1

⎞ 

⎟⎟⎠ 

⎛ 

⎜⎜⎝ 

⎛ 

⎜⎜⎝ 

⎞ 

⎟⎟⎠ 

sin θ cos φ 
sin θ sin φ 

cos θ 
1 

1 0 0 0 
0 1 0 0

K� = k� = k 0 0 γ −γβ 
γ0 0 −γβ ⎛ 

⎜⎜⎝ 

⎞ 

⎟⎟⎠ , 

sin θ cos φ

sin θ sin φ


γ(cos θ − β)

γ(1 − β cos θ)


= k 

so 

φ� = φ 

cos θ� = 
cos θ − β 

1 − β cos θ 

k� = kγ(1 − β cos θ) 

This matches equations (1)-(4) in the Weiskopf et al ray tracing• 
handout 

The change in the angle θ is known as aberration • 

The change in frequency ck is known as the Doppler shift — note • 
that since k = 2π/λ, we have λ�/λ = k/k�. 

If we instead take the ratio 
�

k�2 
x + k�2 

y/kz
� above, we obtain the • 

mathematically equivalent form of the aberration formula given by 
Resnick (2-27b): 

sin θ 
tan θ� = 

γ(cos θ − β) 

⎞ 

⎟⎟⎠ 



Examine classical limits • 

Transverse Doppler effect: cos θ = 0 gives ω� = ωγ, i.e., simple • 
time dilation (classically, ω� = ω, i.e., no transverse effect)


Longitudinal doppler effect: cos θ = 1 gives
• 

ω� 
= γ(1 − β) = 

� 
1 − β

. 
ω 1 + β


For comparison, classical physics, moving observer:
• 

ω� 
= 1 − β. 

ω 

For comparison, classical physics, moving source: • 

ω� 
=

1 
ω 1 + β 



� 

Accelerated motion & proper time 

Consider a clock moving along a curve r(t) though spacetime, as • 
measured in a frame S. During an infinitesimal time interval be­
tween t and t + dt, it moves with velocity u(t) = ṙ(t) and measures 
a proper time interval 

2 
dτ = 

γ

dt 

u 
= 

� 

1 − |ṙ(
c

t
2 

)|
dt. 

The proper time interval (a.k.a. wristwatch time) measured by the • 
clock as it moves from event A to event B along this path is 

tB tB 

Δτ = 
� 

dτ = 
� � 

1 − |ṙ(
c

t
2 

)|2 
dt 

tA tA 

If the two events are at the same position in S, i.e., if r(tA) = r(tB ),• 
then the path r(t) between the two events that maximizes Δτ is 
clearly the straight line r(t) = r(tA) where the clock never moves, 
giving u = 0 and Δτ = Δt = tB − tA. 

For any two events with timelike separation, the proper time is • 
again maximized when the path between the two points is a straight 
line though spacetime. 
Proof: Lorentz transform to a frame S� where A and B are at the 
same position, conclude the the path is a straight line in S� and 
use the fact that the Lorentz transform of a straight line through 
spacetime is always a straight line through spacetime. 

One can also deduce this with calculus of variations, which is • 
overkill for this simple case. 

Calculus of variations 

The much more general optimization problem of finding the path • 
x(t) that minimizes or maximizes a quantity 

t1 

S[x] ≡ f [t, x(t), ẋ(t)]dt 
t0 

subject to the constraints that x(t0) = x0 and x(t1) = x1 reduces 
to solving the differential equation known as the Euler-Lagrange 
equation: 

∂f d ∂f 
∂x 

− 
dt ∂ẋ

= 0. 

Here the meaning of ∂f is simply the partial derivative of f with • ∂ẋ
respect to its third argument, i.e., just treat ẋ as a variable totally 
independent of x when evaluating this derivative. 
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�
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Metrics and geodesics 

In an n-dimensional space, the metric is a (usually position-dependent)• 
n × n symmetric matrix g that defines the way distances are mea­
sured. The length of a curve is 

� 
dσ, where 

dσ2 = drt g dr, 

and r are whatever coordinates you’re using in the space. If you 
change coordinates, the metric is transformed so that dσ stays the 
same (dσ is invariant under all coordinate transformations). 

Example: 2D Euclidean space in Cartesian coordinates. • 

� 
1 0 

g = ,0 1 

tdσ2 = dr g dr = 
� 

dx dy 
� � 

1 0 
�� 

dx 
0 1 

= dx2 + dy2 ,
dy 

dσ = 
� �

drt g dr = 
�

dx2 + dy2 = 
�

1 + y�(x)2dx. 

Applying the Euler-Lagrange equation to this shows that the short­
est path between any two points is a straight line. 

Example: 4D Minkowski space in Cartesian coordinates (c = 1 • 
for simplicity) 

g = η = 

⎛ 

⎜⎜⎝ 

1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 −1 

⎞ 

⎟⎟⎠ , 

dτ2 = −dσ2 = dxt g dx = ⎛ 

⎜⎜⎝ 

1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 −1 

⎛ 

⎜⎜⎝ 

⎞ 

⎟⎟⎠ 

⎞ 

⎟⎟⎠ 

dx 
dy 
dz 

= dx dy dz dt

dt 

= dt2 − dx2 − xy 2 − dz2 , 

dτ = 
� �

dt2 − dx2 − dy2 − dz2 = 
� �

1 − ẋ2Δτ − ẏ2 − ż2dt= 
� �

1 − u2dt = 
dt 

= . 
γ 

Applying the Euler-Lagrange equation to this shows that the ex­
tremal interval between any two events is a straight line though 
spacetime. 


