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Topics
e Lorentz transformations toolbox

— formula summary

— inverse

— composition (v addition)
— boosts as rotations

— the invariant

— wave 4-vector

— velocity 4-vector

— aberration

— Doppler effect

— proper time under acceleration
— calculus of variations

— metrics, geodesics
e Implications

— Time dilation
— Relativity of simultaneity, non-syncronization
— Length contraction

— c as universal speed limit

Rest length, proper time



Formula summary: transformation toolbox

e Lorentz transformation:

vy 0 0 —p
N 0 1 0 0
ARI=1"9 o 1 o |
-8 0 0 v
i.e.,
x ~y(z — Bet)
v y
2 z
ct’ ~(ct — Bx)

e This implies all the equations below, derived on the following pages:

e Inverse Lorentz transformation:

e Addition of parallel velocities:

v+
A(v1)A(v2) = A (1:_(,1;2)

e Addition of arbitrary velocities:

ul, +v
Uz = u! v
1+ %
up/1- &
Uy = ——F
Y 1+ ucz;)
uly/1— %;
Us =
1+ %%
e Boosts as generalized rotations:
coshn 0 0 sinhp
0 1 0 0
Al=v) = 0 0 1 0 ’
sinhnp 0 O coshp
where n = tanh ™' 3
e All Lorentz matrices A satisfy
A'nA =,
where the Minkowski metric is
-1 0 0 0
_ 0 -1 0 0
1 0o o -1 0|
0 0 0 1



All Lorentz transforms leave the interval

As? = AxInAz = Az? + Ay? + A2

invariant

e Wave 4-vector

ks
_ ky
K=, k|
w/e
e Velocity 4-vector
Uy
U 1
Usyw | J |0 w=
c
e Aberration:
cos@ = 080 =0
1— (Bcosb

Doppler effect:
W' = wy(l — Bcosh)
Formula summary: other

e Proper time interval:

tp ' 2
AT:/ |- EOF
ta

c2

e Euler-Lagrange equation:

of dof

dxr dtdi

— (cAt)?



Implications: time dilation

e In the frame S, a clock is at rest at the origin ticking at time
intervals that are At =1 seconds long, so the two consecutive ticks
at t = 0 and ¢ = At have coordinates

0 0
< — 0 o — 0
1 — 0 ) 2 — 0
0 cAt
e In the frame S’, the coordinates are
y 0 0 —p3 0 0
< = 0 1 0 0 O] _ 160
L 0 0 1 0 o] | o |
-6 0 0 y 0 0
¥ 0 0 —p3 0 —yvAt
< - 0 1 0 0 0 _ 0
2= 0 0 1 0 0 o 0
-6 0 0 y cAt yeAt

e So in S, the clock appears to tick at intervals At = vyAt > At,
i.e., slower! (Draw Minkowski diagram.)



Time dilation, cont’d

e The light clock movie says it all:
hitp : / Jwww.anu.edu.au/Physics/qt/

e Cosmic ray muon puzzle

Created about 10km above ground

Half life 1.56 x 10~% second
In this time, light travels 0.47 km

So how can they reach the ground?
— v ~0.99c gives y = 7
— v~ 0.9999c¢ gives v ~ 71

e Leads to twin paradox



Consider two frames in relative motion. For ¢ = 0, the Lorentz
transformation gives 2’ = yx, where v > 1.

Question: How long does a yard stick at rest in the unprimed frame
look in the primed frame?

1. Longer than one yard
2. Shorter than one yard
3. One yard

Implications: relativity of simultaneity

e Consider two events simultaneous in frame S:
0 L

X1 = y X2 =

o O O

0
0
0

e In the frame S’, they are

vy 0 0 —p 0 0
o 0 1 0 0 o]l [ o
1= 0 0 1 0 o | o
-6 0 0 y 0 0
¥y 0 0 —8 L vL
o 0 1 0 0 0o | 0
2 = 0 0 1 0 0o |~ 0
-6 0 0 v 0 —pL

e So in §’, the second event happened first!

e So S-clocks appear unsynchronized in S’ - those with larger x run
further ahead



Implications: length contraction

e Trickier than time dilation, opposite result (interval appears shorter,
not longer)

e In the frame S, a yardstick of length L is at rest along the z-axis
with its endpoints tracing out world lines with coordinates

0 L
X = 0 X9 = 0
1 — 0 ) 2 — 0
ct ct
e In the frame S’, these world lines are
zh vy 0 0 —p 0 —Bct
< = Y1 _ 0 10 0 0 _ 0
L= 21 o 0 0 1 0 0 o 0
ct} -8 0 0 5 ct ~ct
5 vy 0 0 —p L L — ypBct
< = s _ 0 1 0 0 0 _ 0
27 24 o 0 0 1 0 0 o 0
cth -8 0 0 ~ ct ~vet — yBL

e An observer in S’ measures length as xf, — 2} at the same time ¢/,
- not at the same time ¢.

e Let’s measure at t' = 0.
e t{ =0 when ¢t = 0 — at this time, 27 =0
e t, =0 when ct = BL - at this time, x, = yL —y3°L = L/v
e So in S’-frame, measured length is L' = L/~, i.e., shorter
e Let’s work out the new world lines of the yard stick endpoints
e X} + (et} =0, so left endpoint world line is
x) = —vt]
o x5, — L+ B(cth +vBL) = 0, so right endpoint world line is

L
xh =L — B(cthy + yBL) = S vt

e Length in S’ is

L
oot = 2ot — ) =

=S

since both endpoints measured at same time (t; = t5)

e Draw Minkowski diagram of this



Superluminal communication?

Velocity addition formula shows that it’s impossibe to accelerate
something past the speed of light

But could there be another way, say a type of radiation that moves
faster than light?

Can an event A influence another event B at spacelike separation
(hence transmitting information faster than the speed of light)?

There is another frame where B happened before A! (PS3)
Draw Minkowski diagram of this

By inertial frame invariance, B can then send a signal that arrives
back to A before she sent her initial signal, telling her not to send
it.

Implication: cisn’t merely the speed of light, but the limiting speed
for anything

“Everything is relative” — or is it?

All observers agree on rest length
All observers agree on proper time

All observers (as we’ll see later) agree on rest mass



Transformation toolbox: the inverse Lorentz

transform

e Since x' = A(v)x and x = A(—v)x’, we get the consistency re-

quirement

x = A(—v)x' = A(—v)A(v)x

for any event x, so we must have A(—v) = A(v)~!, the matrix

inverse of A(v).

o Isit?
v 0 0 B v 0
seomo- [0 L[
w0 0 v -8 0
i.e., yes!

o= o O

Transformation toolbox: velocity addition

(= elel
o O = O

e If the frame S’ has velocity vy relative to S and the frame S” has
velocity vg relative to S’ (both in the x-direction), then what is

the speed vz of S” relative to S?
e x' = A(vy)x and X" = A(v2)x’ = A(va)A(v1)x, so
e A(vs) = A(v2)A(vy), t.e.

V3 0 0 —1303 V2 0 0
0 1 0 0 . 0 1 0
0 0 1 0 o 0 0 1
—v363 0 0 V3 —v2B2 0 0
14+ 8162

. 0

= M2 0
—[61 + B2]

e Take ratio between (1,4) and (1,1) elements:

A(ws)ar B+ B

Ps = A3 14616

e In other words,
- V1 + Vg
U3 = 1+ V1V *

C2

—72/32

0
0

Y2

0
1
0
0

o OO

g4l
0

0
-7151
—[B1 + B2]
0

0
1+ 8152

o= o o

oSO = O

_ o O O

O = O O

-5

71



Transformation toolbox:
perpendicular velocity addition

e Here’s an alternative derivation of velocity addition that easily
gives the non-parallel components too (but 4-vector method on
next page is simpler)

e If the frame S’ has velocity v in the z-direction relative to S and

a particle has velocity v’ = (u,uy,u}) in ', then what is its
velocity u in S?

e Applying the inverse Lorentz transformation
= (@' +ot)
/

!
= Z

= A+ [)

~ NV e R
Il

to two nearby points on the particle’s world line and subtracting

gives
der = ~(dz' +wvdt)
dy = dy
dz = d7
dt = ~(dt' +wvdx' /).
der = ~(dz' +vdt)
dy = dy
dz = d
dt = ~(dt' +wvdx' /).
e Answer:
dz  ~y(dz' +vdt) ‘fif,/ + ul, + v
Uu. = _— = 7 = T = 7
S T R R
dy dy’ . A
t/
U = — = T = T = 7
! At y(dt+ ) 1+ 59 1+
dz dz' yldz ul\/1- 2%
u = —_—= 7 = 7 = 7
S A @) s 1+



Transformation toolbox: velocity as a 4-vector

e For a particle moving along its world-line, define its velocity 4-

vector
Ug
dX U
U= — = v,
dT Tu Uz
c
where
1
Yu =

u2
V'
e This is the derivative of its 4-vector x w.r.t. its proper time 7, since
dr = dt/v,

* U=AU: X' dAX . dX
g = = A_i = A
v dr’ dr dr Y,

since the proper time interval dr is Lorentz-invariant

e This means that all velocity 4-vectors are normalized so that
UinU = -2

e This immediately gives the velocity addition formulas:

Uy vy 0 0 p Ug
; uy | _ 0 1 0 O Uy
U= [ =AU =% ) g g 1 o u.
c 8 0 0 v c
Uz +V
'Vu'Y[ux + v} 1+5””/U,Y/CQ
_ Yully = Y 1+uymv/02
YuY= “ _us/y ’
UgV 14ugv/c?
rYu’Y[l"'cLé}C c

Uy

where vy = Yoy [1 + C";’] — this last equation follows from the

fact that the 4-vector normalization in Lorentz invariant, i.e.,u’*nu’ =
t

u‘nu=—1.

e The 1st 3 components give the velocity addition equations we de-
rived previously.



Transformation toolbox:
boosts as generalized rotations

e A “boost” is a Lorentz transformation with no rotation

e A rotation around the z-axis by angle # is given by the transfor-

mation
cos 6 sin 6

0
—sinf cosf O
0 0 1
0 0 0

_— o O O

e We can think of a boost in the z-direction as a rotation by an
imaginary angle in the (z, ct)-plane:

v 0 0 ~g coshn 0 0 sinh7
0O 1 0 0 0 1 0 0
Al=v) 0o 01 0 |~ 0O 0 1 0 ’
3 0 0 ~ sinhn 0 0O coshp

where n = tanh ™' 3 is called the rapidity.
e Proof: use hyperbolic trig identities on next page

e Implication: for multiple boosts in same direction, rapidities add
and hence the order doesn’t matter

Hyperbolic trig reminders

et +e "
h pr—
coshz 5
sinhx = c-¢
2
tanhx — i
et 4 e %
cosh™z = In(z+ Va2—-1)
sinh™z = In(z+ Va2+1)
tanh 'z = 1ln 1+2
2 1—=x
1
coshtanh ™tz = ———
V1—a22
T

sinhtanh™! z =

V1—22

2 -
cosh“z —sinh“x = 1



The Lorentz invariant

e The Minkowski metric

1 00 0
o 10 o
=10 0 1 o0

00 0 -1

is left invariant by all Lorentz matrices A:
AlnA =n

(indeed, this equation is often used to define the set of Lorentz ma-
trices — for comparison, A‘TA = T would define rotation matrices)

e Proof: Show that works for boost along z-axis. Show that works
for rotation along y-axis or z-axis. General case is equivalent to
applying such transformations in succession.

e All Lorentz transforms leave the quantity

xinx =22 +y? + 2% — (ct)?

invariant

e Proof:
xX''nx’ = (Ax)'n(Ax) = x" (A'nA)x = x'nx

e (More generally, the same calculation shows that x'ny is invariant)

e So just as the usual Euclidean squared length |r|? =r -1 =r'r =

r'Ir of a 3-vector is rotaionally invariant, the generalized “length”
x!nx of a 4-vector is Lorentz-invariant.

e It can be positive or negative

e For events x; and X9, their Lorentz-invariant separation is defined
as
Ac? = Ax'nAx = Ax? + Ay? + A2% — (cAt)?

o A separation Ac? =0 is called null
e A separation Ac? > 0 is called spacelike, and
Ao = VAo?

is called the proper distance (the distance measured in a frame
where the events are simultaneous)

e A separation Ac? < 0 is called timelike, and
AT =/ —Ac?

is called the proper time interval (the time interval measured in a
frame where the events are at the same place)

e More generally, any 4-vector is either null, spacelike of timelike.

e The velocity 4-vector U is always timelike.



Transforming a wave vector
e A plane wave
E(x) = sin(kzx + kyy + k.2 — wt) (1)

is defined by the four numbers

w/e

e If the wave propagates with the speed of light ¢ (like for an electro-
magnetic or gravitational wave), then the frequency is determined
by the 3D wave vector (kg, ky, k.) through the relation w/c = k,

where k = | /k2 + k2 + k?

e How does the 4-vector K transform under Lorentz transforma-
tions? Let’s see.

e Using the Minkowski matrix, we can rewrite equation (1) as
E(X) = sin(K'nX).

e Let’s Lorentz transform this: X — X', K — K’. Using that
X' = AX, let’s determine K'.

E' = sin(K''nX’) = sin(K''nAX) = sin[(A"'K") (A'nA)X] = sin[(A'K')'nX].

e This equals F if A7'K’ = K, i.e., if the wave 4-vector transforms
just as a normal 4-vector:

K' = AK

e This argument assumed that E’ = E. Later we’ll see that the
electric and magnetic fields do in fact change under Lorentz trans-
forms, but not in a way that spoils the above derivation (in short,
the phase of the wave, K!'nX, must be Lorentz invariant)

e So a plane wave K in S is also a plane wave in S’, and the wave
4-vector transforms in exactly the same way as X does.



Aberration and Doppler effects
e Consider a plane wave propagating with speed c in the frame S:

sin 6 cos ¢
sin 6 sin ¢
cos
1

K=k

where ck is the wave frequency and the angles € and ¢ give the
propagation direction in polar coordinates.

e Let’s Lorentz transform this into a frame S’ moving with speed v
relative to S in the z-direction: k/ = Ak, i.e.,

sin 0’ cos ¢’ 1 0 0 0 sin 0 cos ¢
;| sin®sing’ _ 0 1 0 0 sin 6 sin ¢
K=k cos &’ =k 0 0 ~y -0 cos
1 0 0 —p 5 1
sin 6 cos ¢
_ sin 6 sin ¢
= | qeoso-p) |
~¥(1 — Bcosb)
S0
o = ¢
cosf — 3
o' e
€08 1— Bcosf

K = ky(l— Bcosh)

e This matches equations (1)-(4) in the Weiskopf et al ray tracing
handout

e The change in the angle 6 is known as aberration

e The change in frequency ck is known as the Doppler shift — note
that since k = 2w /A, we have N'/A = k/k'.

o If we instead take the ratio {/k'2 + k’i/k; above, we obtain the
mathematically equivalent form of the aberration formula given by
Resnick (2-27b):

sin 6

~v(cos @ — f3)

tan g’ =



Examine classical limits

Transverse Doppler effect: cosf = 0 gives ' = w7, i.e., simple
time dilation (classically, w’ = w, i.e., no transverse effect)

Longitudinal doppler effect: cosf =1 gives

W' 1-p3

= —q1-p8) =4/ —=.

- =701-0) 175
For comparison, classical physics, moving observer:
UJ/
w

=1-4

For comparison, classical physics, moving source:
W' 1
w

T 145



Accelerated motion & proper time

Consider a clock moving along a curve r(t) though spacetime, as
measured in a frame S. During an infinitesimal time interval be-
tween t and t 4 dt, it moves with velocity u(t) = r(¢) and measures
a proper time interval

" 2
P G
Yu c

dt.

The proper time interval (a.k.a. wristwatch time) measured by the
clock as it moves from event A to event B along this path is

tB tp . 2
AT:/ dT:/ \ll—ﬂdt
ta ta &

If the two events are at the same position in S, i.e., if r(t4) = r(tp),
then the path r(t) between the two events that maximizes A7 is
clearly the straight line r(¢) = r(t4) where the clock never moves,
givingu=0and AT = At =tg —ta.

For any two events with timelike separation, the proper time is
again maximized when the path between the two points is a straight
line though spacetime.

Proof: Lorentz transform to a frame S’ where A and B are at the
same position, conclude the the path is a straight line in S’ and
use the fact that the Lorentz transform of a straight line through
spacetime is always a straight line through spacetime.

One can also deduce this with calculus of variations, which is
overkill for this simple case.

Calculus of variations

The much more general optimization problem of finding the path
x(t) that minimizes or maximizes a quantity

S[a] E/tlf[t,x(t),:b(t)]dt

subject to the constraints that x(tg) = xg and x(¢1) = x1 reduces
to solving the differential equation known as the Euler-Lagrange
equation:

Here the meaning of % is simply the partial derivative of f with
respect to its third argument, ¢.e., just treat & as a variable totally
independent of x when evaluating this derivative.



Metrics and geodesics

e In an n-dimensional space, the metric is a (usually position-dependent)
n X n symmetric matrix g that defines the way distances are mea-
sured. The length of a curve is [ do, where

do? = dr' g dr,

and r are whatever coordinates you're using in the space. If you
change coordinates, the metric is transformed so that do stays the
same (do is invariant under all coordinate transformations).

e Example: 2D Euclidean space in Cartesian coordinates.

(10
g*017

do* =dr'gdr = ( dv dy )( (1) (1) >< (Z >:dx2+dy27

/da=/\/drtgdr=\/dw2+dy2:\/1+y’(%‘)2d$-

Applying the Euler-Lagrange equation to this shows that the short-
est path between any two points is a straight line.

e Example: 4D Minkowski space in Cartesian coordinates (¢ = 1
for simplicity)

1 0 0 O
o 0 1 0 O
E=M1=1 9 0 1 o |°
0 0 0 -1
dr? = —dazzdxtgdx:

1 0 0 O dx
_ 0O 1 0 O dy
—(dx dy dz dt) 00 1 0 d-
0 0 0 -1 dt

= dt* — da® — xy? — d2?,

Ar = /dT:/\/dtz—de—dyQ—szZ/\/1—x'2—y2—z'2dt
/\/1—u2dt: @
¥

Applying the Euler-Lagrange equation to this shows that the ex-
tremal interval between any two events is a straight line though
spacetime.



