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Topics 

Formula summary • 

Momentum & energy • 

Acceleration & force (optional) • 

Transformation of force (optional) • 

Transformation of acceleration (optional) • 



Dynamics toolbox: formula summary 

Mass-energy unification: • 

E = mc 2 = m0γc2 

Momentum 4-vector: • 
⎛	

px 
⎞ 

pyP ≡ m0U = 
⎜⎜ ⎟⎟

pz
⎝ ⎠

E/c 

• Energy formula: 
E = 

�
(m0c2)2 + (cp)2 

Velocity formula: •	
cp

β = 
E 

Optional material: • 

– Acceleration 4-vector: 

dU 
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a 
� 

u a 
� 

u 
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A ≡ 
dτ 

= γu 
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0 + γu 
4 

c

· 
2 c 

– Force 4-vector: 

d 
� 

F 
�

F ≡ 
dτ 

P = γu P/c 
= m0A 

–	 Power: 
P = Ė = u F = m0γu 

3 u a · · 
– Force 3-vector: 

F 
= a + γ2 u a

u = 

� 
γu

2a (u & a parallel) 
m0γu

u c

· 
2 a (u & a perpendicular) 

– Acceleration 3-vector: 

P u 
ma = F − 

c2 

– Force transformation: 
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P − vFx
P � = uxv1 − c2 



Momentum & energy toolbox: 

Relativistic mass: • 
m = γm0 

Mass-energy unification: • 

E = mc 2 

Momentum 4-vector (momentum-energy unification):• 

= m0γu 
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uy 

uz 
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⎟⎟⎠ = m 
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⎟⎟⎠

px 

py 

pz 

dX
P ≡ m0U = m0 ,

dτ 
E/cc c 

(Use upper case X, U and P for the 4-vectors to avoid confusion 
with the x, u and p 3-vectors.) 

Handy velocity formula follows straight from this: • 

cp
β = 

E 

Rest energy:•	
2E0 = m0c


is total energy of particle in the frame where it is at rest


Kinetic enery:
• 

1 
� 

u 4
�

K = E − E0 = mc 2 − m0c 2 = m0c 2(γ − 1) = m0u 2 + O
2 c 

Rest mass invariant: • 

m0 =
1 �−PtηP =

1 �
E2 − c2p2 , 

c c2 

giving the handy relations


E = 
�

(m0c2)2 + (cp)2 ,

� 

E2

p ≡ |p| = 

c2 
− (m0c)2 . 

•	 Low-speed limit |β| � 1: 

1 
E ≈ m0c 2 + m0u 2 

2 
, 

p = m0γu ≈ m0u. 

•	 High-speed limit |β| ≈ 1 (γ � 1, E � E0): 

E ≈ cp 

This becomes exact (E = cp) for particles moving with speed of 
light, like photons and gravitons. 



−PtηP = (E/c)2 −p2 is invariant also for system of particles, since • 

Ptot
� ≡ 

� 
P�i = 

� 
ΛPi = Λ 

�� 
Pi 

� 

= ΛPtot. 
i i i


We derived p = m0γu only for 1-dimensional collision. But any• 
collision is 1-dimensional in the frame where the total momentum 
is zero! 
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Acceleration & force (optional!) 

The acceleration 4-vector A and the Force 4-vector F are less useful • 
than their 4-vector cousins X, U, P and K. We’ll use F mainly for 
deriving the force transformation law, which will in turn give us 
the transformation law for electromagnetic fields. We’ll use upper 
case A for the acceleration 4-vector to avoid confusion with the the 
acceleration 3-vector a, and the annoying symbol F for the force 
4-vector to avoid confusion with the the force 3-vector F. 

Acceleration 4-vector: • 
⎛ 

⎜⎜⎝ 

⎞ 

⎟⎟⎠ 
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uy 
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dU dU d d u
A = γu = γu γu = γu γu≡ 

dτ dt dt dt c 
c 

u̇ a + γ̇uuu 
γ2 

u + γuγ̇u = γu = 0 γ̇ucc 

u aa u 
γ2 

u + γ4 
u 

·
= ,0 c2 c 

where in the last step, we have used the fact that 

γ̇u = γu 
3 u 

c

· 
2 

a 
. 

Force 4-vector: • 

d d d d
F ≡ P = γu P = γu m0U = m0 U,

dτ dt dt dτ 

so by definition, we have 

F = m0A. 

(Note that this does not apply the Newtonian result F = ma!) 

Interpretation of Force 4-vector: • 

Fṗd 
P = γuF = γu = γuĖ/c P/c 

,
dt 

where F = ṗ is the familiar force 3-vector and P = Ė is the power, 
the energy change per unit time (in Watts). 

Work-energy theorem: • 

dr 
dE = F dr = F dt = F udt,· · 

dt 
· 

so the power satisfies 

P = Ė = u F. · 

Force 3-vector explicitly: Dividing the above equation F = m0A • 
by γu gives 

F u a 
u.= a + γu 

2 · 
m0γu c2 



Special case where u and a are parallel, e.g., for linear motion: • 

F 
= a + γu 

2 u
2a 

= 
�
1 + γu

2β2
� 
a = γu

2a. 
m0γu c2 

Special case where u and a are perpendicular, eg, for circular mo­• 
tion: 

F 
= a 

m0γu 

Note that in relativity, F and a are generally not parallel, but that • 
they are parallel for these two special cases.


Acceleration 3-vector explicitly:
• 

F u F F P 
a = u = u. 

· 
m0γu 

− 
m0γuc2 m 

− 
mc2 

The last term (the departure from F = ma) is seen to have the form 
of a friction term proportional to the power put into the particle. 
Derivation: the three steps below. 

d m0γuc2 d E Ė u F P 
γ̇u = = = = 

· 
= . 

dt m0c2 dt m0c2 m0c2 m0c2 m0c2


Combining this with the other expression for γ̇u above gives


u F 
u a = . 

· · 
γu

3m0 

The above equation for F now becomes


F P u a

= a + u = a + γu 

2 · 
u. 

m0γu m0γuc2 c2 



Transformation of force 

Let’s compute the transformation law for force by transforming to • 
a frame S� moving with velocity v in the x-direction relative to S: 

⎛ 

⎜⎜⎝ 

Fx
�

Fy
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Fz
�

P �/c 
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0 1 0 
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F� = ΛF = γu = γu� 

0 0−γβ γ P/c ⎛ 
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γ[Fx − βP/c] 
Fy 

Fz 

γ[P/c − βFx] 

γ[Fx − βP/c] 
Fy 

Fz 

γ[P/c − βFx] 

γu� 

γ(1 − uxv )2c

= γu . 

In the last step, we used the relation γu� = γuγ[1 − uxv/c2] which 
we proved earlier when transforming the velocity 4-vector U — it 
followed from the fact that its normalization is Lorentz invariant, 
i.e., U�tηU� = UtηU. 

The 4 components now give our desired force transformation equa­• 
tions: 

Fx
� = 

F

1 
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−
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u
c

c
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x

2 

v 

P
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Fy
� = 

Fy 

γ 
�
1 − uc

xv 
� , 
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Fz
Fz
� = 

γ 
�
1 − uxv 

� , 
c2 

P − vFx
P � = ux v ,1 − c2 

where P = u F as usual. · 
If we take S to be the rest frame of the particle, then u = 0,• 
P = u · F = 0 and this simplifies to Fx

� = Fx, Fy
� = Fy /γ, Fz

� = 
Fz /γ, so in the frame S� where the particle is moving, the force 
is unaffected in the parallel direction and suppressed by γ in the 
transverse directions. 

⎞ 

⎟⎟⎠ 



Transformation of acceleration 

We could derive expressions using an approach like for force, but • 
the results are so messy that it’s not particularly useful — it’s 
better to deal with explicit problems as needed. 

Here’s a useful special case that you get to derive on a problem set • 
(probably PS7): For an arbitrary acceleration a in S, the acceler­
ation a� in S� is related to a via 

a�x ax = 
γ3(1 + vu�x/c2)3 

ay = 
ay
�

,
γ2(1 + vu�x/c2)2 

with the important caveat that the expression for ay is only valid 
for the case where either u�y = 0 or a�x = 0. 


