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Topics
e Formula summary

e Momentum & energy

Acceleration & force (optional)

Transformation of force (optional)

Transformation of acceleration (optional)



Dynamics toolbox: formula summary
e Mass-energy unification:

E =mc* = mgyc?

Momentum 4-vector:

Px
P=myU= Py
E/c

Energy formula:

Velocity formula:

Optional material:

— Acceleration 4-vector:

_dU 5[ a su-a/ u
A= t(h) e (1)

— Force 4-vector:

F

d
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— Power: )
P=F=u-F=m¢lu-a
— Force 3-vector:

y2a (u & a parallel)
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Mo Ya a (u & a perpendicular)
— Acceleration 3-vector:
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— Force transformation:
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Momentum & energy toolbox:

e Relativistic mass:
m = ymg

e Mass-energy unification:

E = md?

e Momentum 4-vector (momentum-energy unification):

Uy Uy Dz
U U
P =moU =mo— = moyu Y =m Y = Py
dr Uz Uz Pz
¢ c E/c

(Use upper case X, U and P for the 4-vectors to avoid confusion
with the x, u and p 3-vectors.)

e Handy velocity formula follows straight from this:
_@
A= E

e Rest energy:
Ey = moc?

is total energy of particle in the frame where it is at rest

e Kinetic enery:

1 4
K:E—Eo:mc2—m002:m002(7—1):2m0u2+0<u )
c

e Rest mass invariant:

1 1
my = —\/=PP = 5 \/E? —2p?,
c c
giving the handy relations
E = \/(moc®)? + (cp)?,

E2

07 — (mOC)z.

p=lpl=
e Low-speed limit |3] < 1:
F =~ m002 + %mOUQ,
P = Moyu & Mol
e High-speed limit [3| = 1 (y > 1, E > FEy):
E~xcp

This becomes exact (E = c¢p) for particles moving with speed of
light, like photons and gravitons.



e —PinP = (E/c)?—p? is invariant also for system of particles, since
P, = Z P, = ZAPi =A (Z Pi> = AP.:.

e We derived p = mg~vyu only for 1-dimensional collision. But any
collision is 1-dimensional in the frame where the total momentum

is zero!



Acceleration & force (optional!)

e The acceleration 4-vector A and the Force 4-vector I are less useful
than their 4-vector cousins X, U, P and K. We’ll use F mainly for
deriving the force transformation law, which will in turn give us
the transformation law for electromagnetic fields. We’ll use upper
case A for the acceleration 4-vector to avoid confusion with the the
acceleration 3-vector a, and the annoying symbol F for the force
4-vector to avoid confusion with the the force 3-vector F'.

e Acceleration 4-vector:

Uy
W W aw_ [ ) a4
= ar = Tu dt —'Yudt'}/u wu, —’Yudt'Yu c

C

o u . u \ a+yu
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where in the last step, we have used the fact that

. zu-a
'Yu - ’Yu 02 N
e Force 4-vector:
d d d d
so by definition, we have
F = moA.

(Note that this does not apply the Newtonian result F = ma!)

e Interpretation of Force 4-vector:

dy p o\ F
F_%dtP_%(E/c>_%(P/c>’

where F = p is the familiar force 3-vector and P = E is the power,
the energy change per unit time (in Watts).

e Work-energy theorem:

d;dt — F - udt,

E—-F.dr=F. —
d dr p;

so the power satisfies
P=E=u-F.
e Force 3-vector explicitly: Dividing the above equation F = mgA

by 7. gives

ou-a
=a+, 2 u.

moYu



Special case where u and a are parallel, e.g., for linear motion:

u-a
=aty— = (1+mf)a=a

Special case where u and a are perpendicular, eg, for circular mo-

tion:
F

moyu

=a
Note that in relativity, F and a are generally not parallel, but that
they are parallel for these two special cases.

Acceleration 3-vector explicitly:

F u-F F P
a= -————u=——- —u
meYe — MoYuC? m  mc?

The last term (the departure from F = ma) is seen to have the form
of a friction term proportional to the power put into the particle.
Derivation: the three steps below.

_dmo'yMCQ_d E E u-F P

— = — = = = )
Y dt moc? dt mgc2  mgc2 mgec?2 mpc?

Combining this with the other expression for 4, above gives

u-F
ua=——.
YuMo
The above equation for F now becomes

u-a

F 2
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Transformation of force

e Let’s compute the transformation law for force by transforming to
a frame S’ moving with velocity v in the z-direction relative to S:

Ff; 0% 0 0 —3 F,
, ol 0 1 0 0 F,
Fo= Fo| = AR =, 0 0 1 0 F,
P'/c -8 0 0 5 P/c
V[Fm_ﬁp/c] W[Fz_ﬁp/c}
_ Fy _ ! Ey
B E. (1 -7 F.
’Y[P/C_ﬁFx] ’Y[P/C_ﬂFw}

In the last step, we used the relation v,, = v,7[1 — uzv/c?] which
we proved earlier when transforming the velocity 4-vector U — it
followed from the fact that its normalization is Lorentz invariant,
i.e., U'lnU’ = UlnU.

e The 4 components now give our desired force transformation equa-

tions:
F,— %P
Fo= Soup
F,
F, = __
Y-
F
F, = S
A Gl
P P —vF,
= T

where P = u - F as usual.

e If we take S to be the rest frame of the particle, then u = 0,
P =u-F =0 and this simplifies to F, = F,, F, = I}, /v, F =
F./~, so in the frame S’ where the particle is moving, the force
is unaffected in the parallel direction and suppressed by v in the
transverse directions.



Transformation of acceleration

e We could derive expressions using an approach like for force, but
the results are so messy that it’s not particularly useful — it’s
better to deal with explicit problems as needed.

e Here’s a useful special case that you get to derive on a problem set
(probably PST7): For an arbitrary acceleration a in S, the acceler-
ation a’ in S’ is related to a via

!

a; = S
R A e
/
a
ay, = Y

V(1 + vup/c?)?’

with the important caveat that the expression for a, is only valid

for the case where either u; = 0 or a}, = 0.



