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Summary of course so far: See study guide

Main focus. be able to solve problems
that involve converting between
different inertial frames



MIT Course 8.033, Fall 2006, L ecture 8
Max Tegmark

Today: Geodesics, calculus of variations
» The Euler-Lagrange equation
 Deriving it
e Using it:
- metrics, Euclidean space geodesics
- Minkowski space geodesics
- gravitational redsnift
- brachistochrone problem
-caternary



Photograph of a brachistochrone experiment. |mage removed due to copyright restrictions.



Brachistochrone flicks
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Metrics and geodesics

e In an n-dimensional space, the metricis a (usually position-dependent)
n X n symmetric matrix g that defines the way distances are mea-
sured. The length of a curve is [ do, where

do? = dr' g dr,

and r are whatever coordinates you're using in the space. If you
change coordinates, the metric is transformed so that do stays the
same (do is invariant under all coordinate transformations).

e Example: 2D Euclidean space in Cartesian coordinates.
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Applying the Euler-Lagrange equation to this shows that the short-
est path between any two points is a straight line.



e Example: 4D Minkowski space in Cartesian coordinates (¢ = 1
for simplicity)
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Applying the Euler-Lagrange equation to this shows that the ex-
tremal interval between any two events is a straight line though
spacetime.



