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1803-1853, Austrian
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Why opposite sense?

Summary of last lecture:

{- Timedilation
* Length contraction
 Relativity of simultaneity

 Problem solving tips



MIT Course 8.033, Fall 2006, Lecture 6
Max Tegmark

Today: Relativistic Kinematics
 Space/time unification: n, imaginary rotations, etc.
* Proper time, rest length, timelike, spacelike, null

* More 4-vectors: U, K

 Velocity addition

» Doppler effect

» Aberration



Velocity
addition



Transformation toolbox: velocity addition

e If the frame 8’ has velocity vy relative to S and the frame 8" has SIMPLER
velocity vy relative to S’ (both in the x-direction), then what is WITH 2x2
the speed vy of S relative to S7

MATRICES

o X' = A(vy)x and X"’ = A(v)x’ = A(va)A(vy)x, so
o A(v3) = Avz)A(vy), te.

Y3 0 0 —vf8s Y2 0 0 —72f Y1 0 0 —mb
0 1 0 0 B 0 1 O 0 0 1 0 0
0 0 1 0 B 0 0 1 0 0 0 1 0
—v333 0 0 Y3 —v2B32 0 O Y2 -y 0 0 Y1
1+61B2 0 0 —[B1+ B2
0 1 O 0
—[BL+B2] 0 0 14 310

e Take ratio between (1,4) and (1, 1) elements:

A(vz)ar B + B2

Ps = CA(vs)n 1+ B

e In other words,
U1 + VU2

U3 = —— 00 -
T+



Transtformation toolbox:
perpendicular velocity addition

e Here’s an alternative derivation of velocity addition that easily
gives the non-parallel components too

e If the frame 8’ has velocity v in the z-direction relative to S and
a particle has velocity u' = (ul,u),u}) in §', then what is its
velocity 1 in S7

e Applying the inverse Lorentz transformation

r = ~(z' +vt')
y = Y
: = 2z
t = ~(t +ovr'/cP)
to two nearby points on the particle’s world line and subtracting
gives
dr = fy(d:r’ + Udt")
dy = dy
: = di

dt = ~(dt +vdx'/c?).



e Answer:
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Unification of
space & time



“Everything is relative” — or is 1t?
e All observers agree on rest length

e All observers agree on proper time

e All observers (as we'll see later) agree on rest mass

Analogy:
Australians and

Bostonians agree
on length of a 3-



Transformation toolbox:
boosts as generalized rotations

o A “boost” is a Lorentz transformation with no rotation

e A rotation around the z-axis by angle # is given by the transfor-

mation
cosf sin@ 0 O
—sinf cos@é 0 O
0 0 1 0
0 0 0 1

e We can think of a boost in the z-direction as a rotation by an
imaginary angle in the (x, ct)-plane:

v 0 0 ~B coshnp 0 0 sinhp
0O 1 0 o0 0 1 0 0
AEv) =1 g 01 0o |~ 0 0 1 0 !
3 0 0 v sinhnp 0 0 coshy

where n = tanh ! 3 is called the rapidity.
e Proof: use hyperbolic trig identities on next page

e Implication: for multiple boosts in same direction, rapidities add
and hence the order doesn’t matter



Hyperbolic trig reminders

coshx = e T
2
et — e~ %
i h _
sinh x >
tanhx = S
et e %
cosh ™tz = In(x + /22 — 1)
sinh 'z = In(x + /22 4+ 1)
1 1
tanh ‘'z = =ln Tz
2 1l—=x
1
coshtanh 'z =
v1— 2
T

sinhtanh 'z =

v1—x?

2 . 1.2
cosh“x —sinh“xz = 1



Transformation toolbox:
boosts as generalized rotations

o A “boost” is a Lorentz transformation with no rotation

e A rotation around the z-axis by angle # is given by the transfor-

mation
cosf sin@ 0 O
—sinf cos@é 0 O
0 0 1 0
0 0 0 1

e We can think of a boost in the z-direction as a rotation by an
imaginary angle in the (x, ct)-plane:

v 0 0 ~B coshnp 0 0 sinhp
0O 1 0 o0 0 1 0 0
AEv) =1 g 01 0o |~ 0 0 1 0 !
3 0 0 v sinhnp 0 0 coshy

where n = tanh ! 3 is called the rapidity.
e Proof: use hyperbolic trig identities on next page

e Implication: for multiple boosts in same direction, rapidities add
and hence the order doesn’t matter



The only difference
between space &
timeisa minus
sign!

The Lorentz invariant

e The Minkowski metric

1 0 0 0
o1 0 o0 O
"=l 9 0 1 0o |©
0 0 0 —195

is left invariant by all Lorentz matrices A:
A'gA =

(indeed, this equation is often used to define the set of Lorentz ma-
trices — for comparison, A‘IA = I would define rotation matrices)

e Proof: Show that works for boost along zr-axis. Show that works
for rotation along y-axis or z-axis. (General case is equivalent to
applying such transformations in succession.



All Lorentz transforms leave the quantity
x'nx = z® + y* + 2% — (ct)*
invariant

Proof:
x"'nx’ = (Ax)'n(Ax) = x'(A'nA)x = x‘'nx
(Also easy to see directly from top equatlon)
(More generally, the same calculation shows that x'ny is invariant)

So just as the usual Euclidean squared length |r|? =r - r = rir =
riIr of a 3-vector is rotaionally invariant, the generalized “length”

xtnx of a 4-vector is Lorentz-invariant.

It can be positive or negative



4-vectorsare null, spacelike or timelike:

e For events x; and Xo, their Lorentz-invariant separation is defined
as

Ac? = AX'nAX = Az® 4 Ay? + Az? — (cAt)?
e A separation Ag2 = 0 is called null

e A separation pAg2 > 0 is called spacelike, and
Ao = vV AG?2

is called the proper distance (the distance measured in a frame
where the events are simultaneous)

e A separation Ag?2 < 0 is called trmelike, and
AT = — AG?

is called the proper time interval (the time interval measured in a
frame where the events are at the same place)



The Three Types of 4-Vectors:

SPACELIKE NULL TIMELIKE

NNt

RN\

AXM Ax =0
AX| = cAt

Figure by MIT OCW.




Timelike,
spacelike
or null?



Transtformation toolbox:
perpendicular velocity addition

e Here’s an alternative derivation of velocity addition that easily
gives the non-parallel components too

e If the frame 8’ has velocity v in the z-direction relative to S and
a particle has velocity u' = (ul,u),u}) in §', then what is its
velocity 1 in S7

e Applying the inverse Lorentz transformation

r = ~(z' +vt')
y = Y
: = 2z
t = ~(t +ovr'/cP)
to two nearby points on the particle’s world line and subtracting
gives
dr = fy(d:r’ + Udt")
dy = dy
: = di

dt = ~(dt +vdx'/c?).
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Application:

dt 1S Invariant



Transformation toolbox: velocity as a 4-vector

e For a particle moving along its world-line, define its velocity 4-

vector
Uy
dX U
U= — =~, Y j
T f}’ Uz
C
where
B 1
Yu = —

o2

¢ This is the derivative of its 4-vector x w.r.t. its proper time 7, since
dr = dt /v,

* U -AU dX' dAX  dX
dr’ ar ar ’

since the proper time interval d7 is Lorentz-invariant

Uf

e This means that all velocity 4-vectors are normalized so that

UtnU = — 2. == \\hich type?



e This immediately gives the velocity addition formulas:

U v 0 0 ~»8 Ug
!
A IR RS B 0 1 0 O Uy,
U= | =AU =% 4 g 1 u,
c vy3 0 0 « c
Uy U
YuY [tz + V] ( Husn/e \
Uy /Y
_ Y Uy = Yu! 1—|—uivfc2 ?
Yy Hz{;;cz
Yuy[1 + 25]c : )

Uy U

where vy = vu7y [1 + =5 } — this last equation follows from the

fact that the 4-vector normalization in Lorentz invariant, .e.,u’*nu’ =
!

u'nu = —1.

e The 1st 3 components give the velocity addition equations we de-
rived previously.



Thisishow itisintheframe S .

But how does it |ook?



Transforming a wave vector
e A plane wave
F(x) =sin(k,z + kyy + k.2 — wi) (1)

is defined by the four numbers

wie

o If the wave propagates with the speed of light ¢ (like for an electro-
magnetic or gravitational wave), then the frequency is determined
by the 3D wave vector (k.,k,,k,) through the relation w/c = k,

where k = \/kg + k2 + k2

e How does the 4-vector k transform under Lorentz transformations?
Let’s see.



Using the Minkowski matrix, we can rewrite equation (1) as

E(x) = sin(k*nx).

Let’s Lorentz transform this: x — x’, k — k’. Using that x’ = Ax,
let’s determine k.

E’ = sin(k''nx’) = sin(K'nAx) = sin[(A 'K (AlnA)x] = sin[(A 'K )inx

This equals £ if A1k’ =k, 7.e., if the wave 4-vector transforms
just as a normal 4-vector:

k' = Ak

This argument assumed that £/ = E. Later we'll see that the
electric and magnetic fields do in fact change under Lorentz trans-
forms, but not in a way that spoils the above derivation (in short,
the phase of the wave, k*nx, must be Lorentz invariant)

So a plane wave k in S is also a plane wave in S’, and the wave
4-vector transforms in exactly the same way as x does.



Aberration and Doppler effects

e Consider a plane wave propagating with speed ¢ in the frame &

sin @ cos @
sin @ sin ¢
cosf

1

k=%k

where ck is the wave frequency and the angles 8 and ¢ give the
propagation direction in polar coordinates.



- Let’s Lorentz transform this into a frame S’ moving with speed v
relative to S in the z-direction: k/ = AKk, 7.e.,

sin @ cos ¢’ 1 0 0 0 sin @ cos ¢
W - p | Sin 0’ sin ¢’ Ll 01 0 0 sin @ sin ¢
B cos &’ 0 0 « —~3 cos @
1 0 0 —p 7y 1
sin & cos ¢
_ % sin f sin ¢
N v(cosf — ) "'
v(1 — Bcosf)
SO
¢ = &
cosll  — cosf — 3
1 — Bcosb

k' = kvy(1— Bcosh)



This matches equations (1)-(4) in the Weiskopf et al ray tracing
handout

The change in the angle € is known as aberration

'The change in frequency ck is known as the Doppler shift — note
that since k = 27/ A, we have M'/A = k/K’.

If we instead take the ratio \/k'"i - k",i/k; above, we obtain the

mathematically equivalent form of the aberration formula given by
Resnick (2-27b):

con g — sin 6
v(cos b — [3)
Examine classical limits
Transverse Doppler effect: cos@ = 0 gives ' = wvy, t.e., simple

time dilation





