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Summary of electromagnetism:

Key formula summary

e l.orentz force law:

1
F =q(E+ ~ux B)
C

e Lorentz transforming the electromagnetic field:

E; — EI
2_R2 i : : E'L = By - BB
E*-B2isLorentzinvariant | g - (&, +4B,)
! -
EeB is Lorentz-invariant Bff = b
B, = ~(By+ BE:)

B, = ~(B,-pBE,).



e (Current 4-vector:

Summary of electromagnetism:
J

Jy
J
pe

where the proper charge density pg is the local charge density in a
frame where J = 0.
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e Electric field from stationary charge g (Coulomb’s law):

E=ZLf= I
2 ¥ 2 + y2 + =2
e Electric field from charge ¢ moving in z-direction:

!

' yar N,
b= 2 f2 12 12 3X2r
(v22'% + ¢ + 27?)

M axwell details and Greek index stuff won’t be on tests




The Standard Model Lagrangian

Summary of last lecture:

Noteto self: dowe
need to permission
the image of this
eguation?

(FromT.D. Gutierrez)
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MIT Course8.033, Fall 2006, L ecture 16
Max Tegmark

Practical stuff:
» Taylor & Wheeler notation alerts: c=G=1, m;=m, fluffy

oday’stopic: General Relativity basics
* Principle of equivalence

e Light bending, gravitational redshift

e Metrics



Journalist: Professor Eddington, isit really true that only three people
In the world understand Einstein's theory of general relativity?

Eddington: Who isthe third?



Q: What medium is a gravitational wave a vibration of ?
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Tegmark 2002, Science, 296, 1427-1433

Note to
self: we
need to get
|P
permission
from
Science for
thisimage?

Space can
vibrate,
stretch, curve

— perhaps

even “mealt’!

Courtesy of Science. Used with permission.




The laws of
physics are the
samein all
Inertial frames



The laws of
physics are the

same 1n al
Thertral frames



Special relativity concept summary
e Space and time unified into 4D spacetime.
¢ Analogous unification for other 4-vectors (momentum+energy, etc.).

¢ Lorentz transform relates 4-vectors in different inertial frames. Ex-
ample: fast moving clocks are slower, shorter and heavier.

o £ = mc? Example: nuclear power.

General relativity concept summary

e Spacetime is not static but dynamic, globally expanding and locally
curving and contracting to form black holes etec.

e Matter curves spacetime so that things moving “straight” (along
geodesics) through curved spacetime appear deflected /accelerated

(gravity).



Newtonian gravity

The “gravitational field” g is minus the gradient V¢ of the Newtonian
gravitational potential ¢. Units: ¢/c? is dimensionless.

¢ How matter affects the gravitational field:
Vi¢ = 4nGp

Implication: the gravitational potential from a single point mass

M at the origin is

GM
(}5:— 3

T

and fields from different masses simply add.

¢ How matter affects the gravitational field:

F=mg=—-—mVo.



Equivalence principle (1911)

e General relativity (GR) consists of two parts: how matter (parti-
cles, electromagnetic fields, etc.) affects spacetime and how space-
time affect matter. The second part is specified by the strong
equivalence principle.

¢ Weak equivalence principle: No local experiment can distin-
guish between a uniform gravitational field g and a frame acceler-
ated with a = g.

e Strong equivalence principle: The laws of physics take on their
special-relativistic form in any locally inertial frame frame.

e A freely falling elevator is a locally inertial frame (if the elevator
is small enough and our experiment short enough), so the strong
version says that special relativity applies in all such elevators any-
where and anytime in the universe, z.e., independently of the space-
time position and velocity of the elevator.



Who' s gone
bungee
jumping?



ELEVATOR MOVIES, BUZZ MOVIE



e Where did this idea come from? Combining
F=ma

with
GmM

F = 5

T

shows that the gravitational acceleration

GM
i —
2
is mass-independent as long as
“inertial mass” = “gravitational mass”.

Is it?



¢ (Galileo’s Pisa experiment showed it with low precision.

e Eotvos (1890) and later others showed with high precision that
a independent of both mass and composition (density, atomic el-
ement, matter/antimatter, etc). Coincidence? Einstein thought
that no, it was telling us something.

¢ In other words, if you know the direction of the worldline of an
object freely floating through a spacetime event (z.e., the direction
of the velocity 4-vector), then the continuation of the worldline
under the influence of gravity is the same regardless of the mass
and composition of the object. This suggested to Einstein that
gravity was a purely geometric effect.
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Figure by MIT OCW.
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EP implication 1.
Gravity bends light



Gravitational lensing

L ensing
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Galaxy Cluster Abell 2218 HST « WFPC2
NASA, A. Fruchter and the ERO Team (STScl, ST-ECF) » STScl-PRC00-08 Image courtesy of NASA.




EP implication 2.
Gravitational
redshift



Harvard Tower Experiment
(Pound & Rebka 1960)

Gamma photons dropped

S 7Fe Detector
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Figure by MIT OCW.

Over 22.6 meters,
the gravitational
redshift isonly
5x10-15, but the
MOssbauer effect
with the 14.4 keV
gy—ray fromiron-57
has a high enough
resolution to detect
that difference.



EP implication 3:
It’sall geometry
(learn how to work
with metrics!)



METRICS



Metrics and geodesics

In an n-dimensional space, the metric is a (usually position-dependent)
n X n symmetric matrix g that defines the way distances are mea-
sured. The length of a curve is [ ds, where

ds* = dr! g dr,

and r are whatever coordinates you're using in the space. If you
change coordinates, the metric is transformed so that ds stays the
same (ds is invariant under all coordinate transformations).

Example: 2D Euclidean space in Cartesian coordinates.

{1 0
g_(]l?

d,sQ:drtng‘:(d.’L‘ dy)((lj ?)(j;)dm2+dy2,

/ds—/\/drtgdr—\/d$2+dy2—\/1+y"($)2d:1:.

Applying the Euler-Lagrange equation to this shows that the short-
est path between any two points is a straight line.



e Example: 4D Minkowski space in Cartesian coordinates (¢ = 1
for simplicity)

~1 0 0 0
- 0 -1 0 0
B=N"=1 o0 0o -1 0 |
0 0 0 1
dr? = ds? =dx'gdx =

-1 0 0 0 dr
i 0 -1 0 o0 dy
_(d:r dy dz dt) 0 0 -1 o0 z
0O 0 0 1 dt

Ar = /dT:/\/dtz—d:cz—dyz—dzz:/\/1—i2—y2—é2dt
dt
= /\/1—u2dt: —.

~

Applying the Euler-Lagrange equation to this shows that the ex-
tremal interval between any two events is a straight line though
spacetime.



Spherical coordinates

e Spherical coordinates (r, 8, ) are defined by

x = rsinfcosy,
y = rsinfsin,
z = rcosb.
e This implies
dr = sinfcoswdr + rcost coswpdf — rsin @ sinpde,
dy = sinfsinedr 4+ rcosf sinpdf + rsin @ cosedyp,
dz = cosfdr — rsinfdob.

e This let’s us reexpress the Minkowski metric in spherical coordi-
nates:

dr? = dt* — dzr® — dy? — dz*
= dt* — dr® — r*df* — rsin® 6dy”.

(To get the second line, we simply plugged in the expressions for
dx, dy and dz and simplified the result.)



(General covariance

e The analogous procedure is used to transform any metric into any
coordinate system.

¢ Key concept: this means that we can do our calculations with
metrics and geodesics in any system of space and time coordinates
we like. In Minkowski space, inertial frames are just a special
class of coordinate systems (the standard spacetime coordinates
(x,y, z,ct) and Lorentz transforms thereof), so we’re not limited
to working in inertial frames in GR.

¢ Einstein insisted that not only the metric but indeed all laws of
physics should be expressible using any coordinate system. This
requirement is called general covariance.



e This is why GR is called General relativity, special relativity being
merely the special case where you were allowed to start with an
inertial frame and make a Lorentz transformation (a particular
linear coordinate transformation).

e If you think of Lorentz transformations as coordinate transforma-
tions, they are simply the ones that have the property

dr* = d(ct)® — dz® — dy® — dz* = d(ct))* — dz’* — dy’* — dz",
since we previously proved that d7 is Lorentz invariant.

e Note that it’s not at all obvious just from staring at a metric that
someone writes down whether it’s really just Minkowski space in
disguise, expressed in some funny coordinates.



In GR, it’s convenient to use units where ¢ = &G = 1, simplifying
these metrics:

Minkowski metric:
dr? = dt* — dz? — dy® — dz?
Newtonian metric:
dr? = (1-+ Zc;S)dtz — dz? — dy® — dz*
Minkowski metric in polar coordinates:
dr? = dt? — dr? — r2d6? — r? sin” Odp?

Friedman-Robertson-Walker (FRW) metric:

d 2
dr? = dt* — a(t)” (1 —Tkrz + r2d0? + r2sin® ﬁdcpz)

Schwartzschild metric (rs = 2M):

2M 2MN\ !
dr? = (1 — —) dt® — (1 — —) dr? — r*df* — r* sin® 6dy?,

r r



e In (+I, 1T's convenlent to use units where ¢ = & = 1, simplitying
these metrics:

e Minkowski metric:

dr? = dt? — dz® — dy® — dz?

e Newtonian metric:

dr* = (1 — 2¢)dt* — dz* — dy* — dz*

e Minkowski metric in polar coordinates:

e Schwartzschild metric (rs = 2M):

—1
dr* = (1 — T—'S) d(ct)? — (1 — E) dr® — r2df* — r* sin® 6dy?,

T T



* Derive Newtonian metric from gravitational redshift

e Test that Newtonian metric reproduces Newton



Next |ecture;

cosmology
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