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Summary of last lecture:

Key formula summary

e l.orentz force law:

1
F =q(E+ ~ux B)
C

e Lorentz transforming the electromagnetic field:

E = FE,
E;; = (Ey — BB;)
E, = ~(E.+ BBy)
B, = B,
B; = (By + BE.)

B, = ~(B,-pBE,).
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Today’stopics.

o Electromagnatism: the 2nd half of the theory
e More advanced E&M

« Even more advanced E& M

 Why E&M isfundamentally flawed



Transforming charge and current densities

e The theory of electromagnetism consists of two parts: how matter
affects fields and how fields affect matter. Above we studied the
latter — let us now study the former.

e Analogy: the theory of gravity consists of two parts: how matter af-
fects fields (the gravitational field) and how fields affect matter. In
general relativity, the role of the gravitational field is played by the
metric, and we will find that both parts of the theory get a geomet-
ric interpretation: the former that matter moves along geodesics
through spacetime and the latter that matter curves spacetime.



e The source of electromagnetic fields is matter carrying electric
charge, characterized at each spacetime eventy by a charge den-
sity p(r,t) and a current density J(r,¢).

e These can be combined into the current 4-vector (or “4-current”)

Ey
]

pc

For a blob of charge of uniform density pg in its rest frame that
moves with velocity 4-vector U, the 4-current is simply

J=poU,

and the total 4-current from many sources (say electrons and ions
moving in opposite directions) is simply the sum of all the individ-
ual 4-currents.

® g is called the proper charge density.



e The first part of the theory (how fields affect matter) is given by
the Lorentz force law that we derived,

F:q(EJr%uxB). (1)

e The second part of the theory (how matter determines the fields)
is given by Maxwell’s equations:

V-E = dxp, (5)
VxB-1 = 2Ty (6)
c c
V-B = 0, (7)
1.



e We derived magnetism from electricity by assuming that the first
part of the theory was Lorentz invariant. Let’s now show that the
second part is Lorentz invariant too, so that everything is consis-
tent. We've already shown that the wave equation (which gives
solutions to Maxwell’s equations in vacuum, z.e., with J = 0) is
Lorentz invariant, but we need to show more: that the full Maxwell
equations are Lorentz invariant in general, even in the presence of
charges and currents.

e You won’t be responsible for the material below in this course —
I’'m just presenting it here so that you can admire the full elegance
of electromagnetism, which only becomes manifest in relativistic
4-vector notation.



e A standard vector calculus result is that a vector field with no curl
can be written as a gradient of some scalar field, say ¢, and a vector
field with no divergence can be written as a curl of some vector
field, A. Maxwell’s last two equations above therefore imply that
we can write

BE = V¢ -A 9)
B = VXA, (10)

where ¢ and A are referred to as the scalar potential and the vector
potential, respectively. Proof: V-B =0 gives B =V X A, after

which the 4th Maxwell equation shows that V X (E + %A) =0
so that we can write E + %A = —Vo.

¢ These are conveniently combined into a 4-vector

Ax
A'y
Az

¢

=
]



e The differential operator

_ 0 : 2
m:(ﬁ) v

is called the d’Alembertian, and is a spacetime generalization of
the Laplace operator V2. It is easy to show that it is Lorentz
invariant.

e In terms of this operator, the wave equation for some scalar field
¢y can be written in the extremely compact form

k) = 0.



e It turns out that there is some slop (known as gauge freedom)
involved in the choices of ¢ and A: for any scalar field ¥ satisfying
the wave equation, you can replace A by A+ V¢ and ¢ by ¢+ %
without changing the fields EE and B. Without loss of generality,
we can use this freedom to make A satisfy the so-called Lorentz
gauge condition

V-A—%cjﬁ:o. (11)

e Plugging equations (9), (10) and (11) into Maxwell’s first two
equations and doing some vector algebra now gives the beautiful
result

LA = —4—WJ.

C

We have solved Maxwell’s equations. This equation shows how
matter determines the fields. For the special case J = 0, we see that
it simply reduces to the wave equation 1A = 0, z.e., each of the
four components of A must separately satisty the wave equation.

e We set out to prove that the second half of the theory was Lorentz
invariant. The last equation show this explicitly, since [ is Loorentz
invariant and A and J are both 4-vectors.



N OTATI ON Maxwell’s Equations

The Original Equations

K EEPS With the knowledge of fluid mechanics MaxwELL!"™™ has introduced the following eight
equations to the electromagnetic fields (the right equations correspond with the original text,
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Here’s some doubly optional material in case you're interested.
If you're familiar with the tensor notation, raising and lowering
of indices and the Einstein summation convention (certainly not
neccesary for this course!), here’s an electromagnetism synopsis:
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0 (Lorentz gauge condition),
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What about Einstein’s puzzle?



Summary of last lecture:

Key formula summary

e l.orentz force law:

1
F =q(E+ ~ux B)
C

e Lorentz transforming the electromagnetic field:

E = FE,
E;; = (Ey — BB;)
E, = ~(E.+ BBy)
B, = B,
B; = (By + BE.)

B, = ~(B,-pBE,).



Key formula summary

e l.orentz force law:

1
F =q(E+ ~ux B)
C

e Lorentz transforming the electromagnetic field:

by
: . : — '}’(Ey_ﬁBz)
2_-R2 _ |
E<-B< Is Lorentz-invariant! _ (B, +BB,)
EeB is Lorentz-invariant! = B,
— f}’(By—I_IBEz)




L et’s build someintuition

Retarded positions

As above, Maxwell’s equations determine the field from arbitrary
colllections of moving charges from their 4-current density. To
boost our intuition, let us look at the special case of a single charge.

The electric and magnetic fields from a stationary chargegat r =0
are (in c.g.s. units)

E = ¢5=4q9=,
B = 0.

What are the fields created by a charge moving with velocity v in
the z-direction? Since the last two equations give the answer in the
rest frame S of the charge, all we need to do is Lorentz transform

them into the frame S’ where the charge is moving. Doing this
gives the new electric field

E, = E,—-r,
T
E = yE,=—+
- ’}’y—?_g’}’y,
E, = yE, =4~z
= B = 5z



e All that remains is to reexpress this result in terms of the new
coordinates (z’,3’,z’). In §’, the charge is moving, so E' will
depend on the new time ¢'. Let us calculate the field at the time
t' = 0in S’ (this is when the charge is at the origin of the frame
S’). At this instant, = yz’, since more generally = = vz’ + yvt'.
Since ¥’ = y and 2z’ = z at all time, this gives

E, = ?_%’ch’;
B, = T%'Yy’,
E, = v,
i.€.
1/2
E;:,y?%r,«: g 3/21“"279* (2 4y + 272) ;2”

( 2 ;2 _I_yf2_|_~f2)

e Conclusion 1: The magnitude E = |E| of the field becomes
anisotropic: decreased by a factor v2 in front of and behind the
moving charge and increased by a factor v in the perpendicular
direction.

e Conclusion 2: The direction of the field (') still points straight
away from the instantaneous position of the charge. This is re-
markable, since the electromagnetic field can only propagate at
the speed of light, so the charge must have caused this field at a
time when it was in a different position (the so-called retarded posi-
tion). Sure enough, this remarkable property no longer holds if the
charge accelerates, leading to the Abraham-Lorentz force fiasco.



e (Current 4-vector:
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e Electric field from charge ¢ moving in z-direction:

i  where the proper charge density pg is the local charge density in a

% frame where J = 0.
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% e Electric field from stationary charge g (Coulomb’s law):
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L eads to Abraham-L orentz for ce fiasco

A fly in the ointment

e Finally, you should know that as beautiful as it is, this whole the-
ory has a lethal flaw (resolved by quantum mechanics). There is
an instability whereby the electric field created by an accelerat-
ing electron acts back on the the electron causing it to undergo
runaway acceleration with v — oco! In c¢.g.s. units and for speeds
v & ¢, this so-called Abraham-Lorentz force on a particle of charge
g is

F = 2¢ A4,
38
e., it depends on the time-derivative of the acceleration, the third
derivative of the position with respect to time. For v <« ¢ we have
F = ma and hence
a=wa,

where the frequency

w=3m ~ (6.266 x 10724s)

for the case of an electron. The solution to this equation is

wit

a=aget, u=1uy+ —aget
W

?

e., the electron will all on its own increase its velocity exponen-
tially, doubling on a timescale around 10~2° seconds, in stark con-
trast to what we actually observe!



