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PROFESSOR:

Today I'm going to couple a huge number of oscillators, and then ultimately we'll
make that number infinitely large. And the way that you can couple oscillators is
through springs, as we did last time, on the air track. And we can let the cars move
like this. We call that a longitudinal motion. That means that the motion is along the

line of the oscillators.

And then we have ways that we can oscillate things perpendicular to the direction of
the oscillators, and we call that a transverse motion. So that goes like this when the
oscillators are like this. And the algebra is identical. It is easier to use the transverse

motion when you do the derivations. And so | will use the transverse motion.

Suppose | have a string and | put on this string beats, masses. | have a tension, T,
each mass is m, and the length between these is |. And this is a fixed end. Fixed,
and this end is also fixed, cannot move. And so this is number 1 this is number 2
this is number 3 and then here is the last one, which is number N. I'm going to have

N of these beats on the string.

So this point here, | can call that 0. | think of this direction of x, and this is the
direction of y. And so at 0 there is no beat, and here at the position N plus 1 there is
no beat either. And so the question now is, what are the normal mode solutions to
that system. There must be "capital N" normal modes. And if N goes to 10,000,

there must be 10,000 normal modes.

At a particular moment in time you can imagine, for instance, that this one is here
and maybe this one is here. And this one maybe here, and maybe this one is here.
The only thing we have to keep an eye on-- that this is always 0, and the y is also

always 0. That's what we call the boundary condition.

Now if you make the amplitude smallest then it's easy to demonstrate that the
tension will remain constant in these pieces, modest amplitudes, and that there is
no motion in the x direction either-- at least you can make it negligibly small. And so

we will only concentrate on the forces is in the y direction. And so now I'm going to



make a blown-up version here for particle number p.

This is particle p, and here's the location of p minus 1. And here's the location of
particle p plus 1. And at a certain moment in time let's assume that the particle is
there, that little mass m. And let's assume that this one is here, and let's assume

that this one is here.

So this vertical displacement is yp, this is yp plus 1, and this, then, is yp minus 1. But
the strings are just attached like this. And so the fact that the strings get longer, we

will ignore that, because of their small amplitudes. So the tension will not change.

Draw this line. We draw this line. | will call this angle alpha p. And | will call this angle
alpha p minus 1. So the tension is going to be on that point p on this little mass m in
this direction, and there's a tension in this direction. And we will assume that these

tensions are then the same, for reasons that | mentioned.

So | can write down, now, for that mass, for that location p, | can write down
Newton's second law. And so | get my of p, second derivative d2y dt squared of
position p. And | see | have one horizontal component-- one vertical component that
drives it down. That is due to this tension, and then | have one that drives it away
from the equilibrium. And so I'm going to get minus T times the sine of alpha p

minus 1, and | get plus 3 times the sine of alpha p.

But, of course, | know what the sine of alpha p minus 1 is because the sine of alpha
p minus 1 is yp minus yp minus 1 divided by I. And so | can write here y of p minus
yp minus 1 divided by I. And here | have T. The sine of alpha p is yp plus 1 minus y
of p divided by .

I'm going to introduce shorthand notation. I'm going introduce that omega 0
squared is T divided by ml. As time goes on, you will get more insight in why we
choose that. At least convince yourself, if you have the time, that this is the

dimension one over second squared. It has the right dimension.

T, by the way, whenever | use this throughout this lecture, is never period. It is

always tension. So | will stay away from the capital T when we're dealing with a
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period. So | can divide m out and | can rewrite this, get the m downstairs, and so we

get y of p double dot.

And what I'm going to do now, I'm going to take the yp here and the yp there. And |
bring to the left. | have a minus here and | have a minus here. So | get plus omega
squared times y of p. And then I'm going to bring the p minus 1 in, and I'm going
bring the p plus 1 in. Notice | have a plus sign here. So | get minus omega 0
squared times yp plus 1. And here | have a plus-- minus minus is a plus. So when |
bring that back | get a minus but | already have the minus so | get yp minus 1. And

that now equals 0. But that is Newton's second law for particle p.

[INAUDIBLE]

Excuse me?

[INAUDIBLE]

What is your problem?

[INAUDIBLE]

Yes, thank you very much. Very good, | appreciate it. This is a 2 because you 2 p's.

You have one here and you have one here. Thank you very much. Very attendant.

So now we have to do this for every single object. So we have capital and
differential equations, one for each particle. And the only thing that we have to keep
in mind, now, when we solve it is that the y0, which refers to that location 0 there,

must always be 0, and that yN plus 1 is also 0.

So if | make a sketch to warm you up to the idea. And | made a sketch for only two
particles, so this is number 1, and this is number 2, and this is a fixed end, and this
is a fixed end, then you can sort of see that in the lowest normal mode you're going
to see something like this, so this is omega minus, and it's going to oscillate like this.
But you can also imagine that in the second mode, which is the highest one, that

number 1 is up and then number 2 is down. So you get this situation and so they



oscillate like this. Just to make you see, | call this little n equals 1, and I call this little
n equals 2-- n referring to the mode. Mode one, | will use this n later on, and this is
then mode number two. And there are only two modes because there are only two

particles.

So let us now proceed with the equation that we have. And let us write down, for this
system, the two differential equations. And so look at this one. We're going to
substitute for p first number 1, which is this one. That's one differential equation.
And then we're going to put in for p number 2, we get a second differential equation.
So if you're ready, then we're going to get y1 double dot plus 2 omega 0 squared
times y1 minus omega 0 squared. And then we get y2, that's this particle, and then
we get plus yp minus 1, which is plus y0, which happens to be 0, by the way,

because y0 here is 0.

And now we go to the-- and this is 0-- now we go to the second particle. And so we
get y2 double dot plus 2 omega 0 squared y2 minus omega 0 squared. And now we
get, first, p plus one, which is number 3, which is y3, which happens to be 0
because y3 is this point, and that's 0 in this specific case with only two objects. And
then we get here plus yp minus 1 and that is-- 5 plus 1, we have 2-- that is y1. And

that is 0.

So these 2 coupled oscillators will have to be solved. And in the normal mode
situation, we are clearly going to put this in as our trial function, cosine omega T.
They must oscillate with the same frequency, omega, otherwise we wouldn't be

dealing with normal modes.

And so these are our trial functions that we're going to put in these equations. And
we will put them in number 1, we're going to put them in number 2 and then we will
put them in particle number p. And then we can all-the-way go to N, and if N is
10,000, we have to write down 10,000 differential equations on the black board. And

that will take the rest of the hour.

So I'm going to number 1 here, so | get a y1 here, which is A1, the second

derivative always gives me a minus omega squared, so you get minus omega



squared times A1. | ditched the cosine omega T because each term will have a
cosine omega T. Then | get plus 2 omega 0 squared times A1. And then | get minus
omega 0 squared times A2, right? Because now | get a 2 plus A0, which happens to

be 0, but | just put it there-- you will see shortly why | want to keep it there.

| got a particle number 2, | got minus omega squared times A2, becomes a little
boring, 2 omega 0 squared times A2 minus omega 0 squared. And now | have a y3
so | get an A3, which happens to be 0, but that's not so relevant right now. And then

| get plus Af.

And the reason why | started off with 1 and 2 is that now you see how we can put it
in the p's particle.. So the p's particle, now, is going to be rather easy-- maybe |
should do that in color-- minus omega squared Ap plus 2 omega 0 squared Ap
minus omega 0 squared. And now we're going to get Ap plus 1 plus Ap minus 1.

And that equals 0. Also this equals 0 and also this equals 0.

And so now you see the differential equation for particle number p. And so you can
go on now to particle capital N, and now you have to solve N differential equations.

That's a zoo. That's a terrible thing.

Now we will take a shortcut which is not very rigid, but it really will save a lot of math.
And that is we will use our intuition. Something that we know, sort of, from
experience. If you had a lot of beats on here, fixed and fixed here, and you ask
yourself what's going to happen in the lowest possible mode, then you just know

that you get something like this. It goes like this, and like this, and like this.

And you know that in the second normal mode, the one that follows, that has a
higher frequency, you expect that this side goes up, this goes down, and that it will
oscillate like this. So we use that experience, which is not very rigid, in order to

decide on our trial function.

This would be mode 1, and this would be node-- mode. Mode 1 and this would be
mode 2. And so now I'm going to put in, as a trial solution, A for particle p, which is

in mode n, as in Nancy, this is the mode.
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| want a sinusoid in there that is always 0 here and 0 there. And they can have an
amplitude, of course, which | can freely choose. So this C of n is the amplitude of
this sinusoid. So this is C1, and this value is going to be C2. Each one can have its

own amplitude.

And then | get the sine of pn pi over N plus 1. So let's look together at this equation,
so that we have a full understanding of what we are trying to put in there. Notice
that p equals 0, that the sine is always 0. That's obvious, because we wanted that,

because this point, the 0 point, is not moving.

Notice also, that if you put in p equals N plus 1, that AN plus 1 is also always 0. So
put in pN plus 1, the sine of a multiple times pi is always 0. Because n is now our

mode, it's going to be 1, 2, 3, et cetera. These are the modes that we're looking for.

For instance, if we take n equals 1. Let's take n equals 1. So we have patrticles, and
they are all in mode 1. So then we get that Ap, in mode 1, would have C1, which is
the amplitude of that sinusoid. And then you would have the sine of n pi divided by
N plus 1. And you can indeed convince yourself that that exactly this sinusoid with
an amplitude C1. And you can also convince yourself that p0, A0, and particle n plus

1 is again 0, of course. And if you take n equals 2--

[INAUDIBLE]

Excuse me?

[INAUDIBLE]

Yeah, boy-- yeah. The nis a p, right? Thank you very much. Is that what you were

saying? Is that what you were saying?

[INAUDIBLE]

Yeah. Thank you very much. Today is not my day. Yeah, that is a p. So for particle
number-- when p is 0, you see, this goes to 0, and when p is n plus 1 this again

goes to 0. So you see here that Ap2 is now C2 times the sine of 2p pi divided by n



plus 1. And that, exactly, is this curve. Notice that if you put in p equals 0, you get a
0. If you put in p is capital N plus 1, you get a 0, but you will also find now a 0

precisely in the middle. When p is capital N plus 1 divided by 2.

And so that is the consequence of the introduction of this function. And of course
the ratios of the individual p's for your particular mode-- take for instance mode
number 1, when the system is oscillating like this, the ratios of the amplitudes of the
individual p's is then given by this sine. p1 has its own amplitude, p2 has its own
amplitude, p3 has its own amplitude. So p1 will be here, p2 will be there, p3 will be
there, p4 will be there, and so on. And so then the amplitude first goes up and then

the amplitude goes down again.

But now comes the question, what is omega n? What is the frequency omega at
these normal modes, n equals 1, n equals 2, n equals 3, n equals 4, and n can go

all the way down, then, to capital N.

And for that, we have to return to this equation. And I'm going to write it, now,
slightly differently. I'm going to take the A's to one side. So I'm going to write down
here A p plus 1 plus 1 p minus 1 and divide that by Ap-- just rearranging. And then
you will find that it is minus omega squared plus 2 omega 0 squared divided by
omega squared. Take a look at this, and convince yourself that this equation is

identical to this one.

If you look in French, French will take you from here one step further, which is pure
trigonometry. And | decided not to go that route, but you can use the values for Ap
that we have defined, namely this one. And so you can now massage the

trigonometry, and you can find that this ratio is very simple. It's twice the cosine. So
this whole thing is twice the cosine of n pi over n plus one. That is correct. n pi over

n plus 1. So there's no physics there, it's purely a matter of trigonometry.

We can now put to an n here, Nancy, because we know now that we're going to get
solutions as a function of the mode number n. And then, with a little bit more
trigonometry, and you really want to check up on French there, which is page 141,

he then comes up with the normal mode frequencies which was our goal.



So | will give you the result, but it really is implicit, already, in here. You will get 2
omega 0, the result is by no means intuitive, times the sine of n pi divided by 2 times
N plus 1. And of course, I'm going to look through that result with you. As of now, it

looks very opaque.

So this then is the solution to omega n. This is the solution. | will take one color to
show you how these link. This is the solution for A. If you know the mode, and you
know which particle it is, and you have specified the amplitude of the sinusoid, then
this tells you each particle, what the amplitude is. If you know the mode n, then you

know that this is going to be the frequency.

And so you can write down, now, that y, which is the displacement as a function of
time-- A is amplitude, y is displacement for article p in mode n. And now we can put
in the amplitude that we know, that is the pn amplitude Apn. And now it's going to

oscillate with cosine omega n times t.

And of course, you can always add a phase angle depending upon at t equals 0,
what the particle is doing. And so this one gives you the amplitude, this one gives
you the frequency, and this, then, is the time dependence of the displacement of

particle number p in mode n.

What | want to do now is to take a specific example, which | also will try to
demonstrate, which will give you tremendous insight. We can actually do it on the
left here. Because this is all very opaque, but when you see an example worked out,

and you see, actually, how it oscillates, then it comes to life.

I'm going to have five beats on a string. 1, 2, 4, 3, 5, fixed here, fixed here. 1, 2, 3,
4, 5, the tension is T, the mass of each one is m, and the separation between them
is . And so N is 5, so keep in mind that N plus 1 is 6. The reason why | write that
down is because you're going to need the N plus 1. And then omega 0 is the square

root of T divided by ml.

So I'm interested in knowing what the frequency is in the lowest possible mode,

which is going to resemble something like this. And so that frequency, omega 1, is
8



then 2 omega 0 times the sine n equals 1, capital N plus 1 is 6. 180 degrees divided
by 12 is 15 degrees so that's the sine of 15 degrees. | write it now in degrees
because | have a better feeling for degrees than | have for radians. And that is all

0.51.

And now got to omega 2, and | get the same thing, except | get 30 degrees. So | get
0.5-- sorry, | get exactly omega 1-- omega 0, right? Because the sine of 30 degrees
is 1/2 and that eats up this one. And | get omega 3. And now | get the sine of 45
degrees. And that is approximately 1.41-- not exactly-- but as the square root of 2,

so that is about 1.41 times omega O.

Then | go to omega 4. So | get 60 degrees, and that can only be approximated,
again, by about 1.73 omega 0. And then | have omega 5, which is the last 1, so |
get the sine of 75 degrees. And that then becomes 3.73-- no, 1.93, 1.93 times

omega 0.

What | want to concentrate on, because that's part of the demonstration, is not so
much on the meaning of omega 0-- that's just some arbitrary thing that | have called
omega 0, but | want to concentrate with you on the ratios of the higher frequencies

to the lowest one.

And so | call the lowest one omega 1. Simply call this omega 1. If that one is omega
1, then the next one is 1.93 omega 1, again, not exactly, but approximately. It is this

1 divided by 0.51. It's the ratio now of the frequencies.

And if | take this one and divide it by that one, then | get 2.73 omega 1, and | take
the next one, | get 3.35 and the last one, then, is 3.73. So the bottom line is that the
ratio of all these frequencies are not at all very nice numbers, as you may have
expected, but the ratios are quite bizarre. 1.93 times higher than the lowest one,

2.73 times higher 3.35 times higher, and 3.73.

And so the general solution to that system is then the linear superposition off all
these normal modes. That's the general solution. You give them very modest

amplitudes. And you can choose the amplitude each one of them. That's effectively

9
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like saying you're choosing C1, C2, C3, C4, C5.

And you also can give them initial velocities if you want to. So at T equals 0, they do
not all have to stand still. You have that choice, too, of course. So you can change

the relative phase between the five different modes.

What | will do, is, | will, to make life simple, | will generate all five normal modes for
you. And | will start them off all at 0 speed, when | show you the simulation. And the
first one that I'm going to show you then is number 1. And then I'm going to show

you number 2.

| want you to appreciate that if | showed you the superposition of 1 and 2, so | let it
oscillate in this mode and in this mode, | start off at a certain position of these
particles, and they start to oscillate in this mode and that mode, that the shape that |
have will never, ever become the same as it was at time 0. And why is that? So you
just let it is oscillate, and you can wait 100 billion ability years, and you will never see
the same shape. So | start with a certain shape and it will never, ever, ever come

back to that shape. Why is that?

Is the ratio an irrational number?

It's right, that the sine of 15 degrees is the killer-- that is not the ratio of two integers.
And therefore you will never get it back to the same position. Maybe approximately,

but you never get it back.

This demonstration is going to be a cocktail between very low tech and very high

tech. And | will start with myself, which is very low tech. And that is this.

| was sitting in my office, and | said to myself, "gee, what will | see?" So | took a
pencil, and | just sketched, very roughly, a sinusoid, right here. And | know,
according to these solutions, if you accept them, that these beats, these particles,
must lie on that sinusoid. And C1 is then the choice of that amplitude of that

sinusoid.

In the second mode, you pick another value for the amplitude, say C2, and then the

10



beats have to lie on that sinusoid, and so on. What you will see, however, is that
these beats are connected with straight wires. So you will not see those nice arcs.
What you will see is of course this. The red lines are the actual strings. And so for
instance, if you go to the second mode, we call that the second harmonic, if like,
then notice that this point here and this point here never reach the amplitude C2.
The sinusoid does, and the C2 in that equation does, but those points will never

reach that because their location is such that they never make it to that point here.

This won't stand still then, that was intuitive. Because we have that here. And if you
go to higher frequencies, particularly the very highest one, neighboring beats
always are out of phase with each other. You see that, up, down, up, down, up. And
again this little particle will never reach the amplitude C5. This one does, this one

does not. This one does not, this one does not, this one. But this one does.

And so as I'm going to show you this simulation we will keep this going because it
will be great to anticipate what we may be seeing. So the first thing that I'm just
going to show you is one complete oscillation in the normal mode number 1, which |
have set to be 15 seconds. With the help of [INAUDIBLE], who has guided me

greatly in this demonstration.

So let me, first of all, give us the right light conditions, and now | will start the last 15
seconds. | have given the amplitude a 2, which is very large, and, of course, that's
unrealistic, these high amplitudes, but | want you to see the relative position of

these particles.

There we go. Now you will see, it will make one complete oscillation. And that of
course is no surprise. If | clicked only once, it will stop now and that will be. If | click

twice, it will start again. No, thank goodness it only did once.

Now I'm going to show you the second one. And | give it the same amplitude. So
C2, | give it 2. And | want you to count how many oscillations it makes before it
comes to a stop. It will again be exactly 15 seconds. And so we will have to agree
that the number of oscillations that it makes is now 1.9. It misses the 2, it will not get

back to the two complete oscillations.
11



And so, you're going to look at this mode. So these two particles will never reach the
value 2. The 2 is marked here. And it will go down, up-- excuse me-- down, up,

down, and it stops just short of two oscillations.

So we'll do that now. So | make the amplitude of the first one 0, and now we get the
amplitude of number 2. And | make that 2, and there we go. Now count. There's
one oscillation, and it will stop just short of two. You can't tell that, of course,

because you don't have that resolution. But it stopped just short of two.

And now we go into this one, again, give it an amplitude of 2 and now we're going to
count, and you will definitely be able to see that it just misses is 2.75. Because 2.75

is something that you can eyeball.

So we're going to number 3 now. So number 3 already has two interesting points,
which don't move at all. This point won't move, and that point won't move. They will

reach the plus 2 and the plus 2.

And 0, and we get a 2. And there we go. That's one, that's two, that's two and a

half, ah! And that's 2.73. You see, it's just short of 2.75. So that is this number.

Now we're going to number 4. For number 4, this one will stand still, and the others
do not have the maximum amplitude of 2. So again, count-- the 2, there we go. 1, 2,

3, and it stops there. It stops at 3.35.

So now, the last one, before we're going to cocktail them, is this one. So again, this
point will be plus 2. So this one will never reach that. This one will reach the plus 2.
OK. One, --see, it doesn't make it to 2, it doesn't get that high-- 2, 3, 3 and 1/2, and
it stops. Just under the 3.5 it stops. Sorry, just over 3 and 1/2 it stops. Sure, this

would have been 3.75. It's just under, there.

Now | will cocktail for you 2 and 4. If | cocktail 2 and 4, then this point will stand still,
and this, of course, is going to be starting up. And this will start up, because | give
them both the same amplitude, | will not go to plus 2 now, but I'll make it plus 1.

Otherwise you get too large values and it becomes a little bit unrealistic in what you

12



see there.

So I'm going to give number 2 a 1, as amplitude, and I'm going to give number 5 a
0, and number 4 also a 1. And now, already, you're going to begin to see that the
motion that you're going to see becomes, already, sort of, a little bit chaotic, a little
erratic. So it's a superposition now, of two normal modes. This one, which | start off
at a 1, here, and this one, which | start off as a 1 here. And at T equals 0 | release

them both with 0 speed. Make sure that | have the 1 in there, yes | do. There we go.

So this motion is already not so predictable. But it's still sort of symmetric, for
obvious reasons, because this one stands still. And now what | want to do is start
them, all five. Now, if we're starting all five, the start will be very asymmetric
because, look, particle number 1, positive. Because | set them all off positive.
Positive, positive, positive, positive, positive. So it will start at very high. Now look at
the number five, positive, negative, positive, negative, positive. So number five will

start very low, and number 1 will start very high.

And then, when it starts to oscillate, it will take more than the age of the universe to
come back to that same shape. But it is extremely erratic. You and I, no one, can
really relate anymore to what's going on. And it is even impossible to imagine that
the motion, in a way, is very simple-- namely, the superposition of five very well-
behaving normal mode solutions. It is a linear superposition or five very simple
normal mode solutions, but the net result is total, utter, chaos. At least that's the

way it appears to us. But it can be it can be dissected into five very simple modes.

So these were transverse motions. And the same idea holds for longitudinal motion.
So you can have five beats with six springs, and then the oscillation is in this
direction. We call that a longitudinal oscillation. In this case, the displacement is
perpendicular to the oscillators. We call that transverse. But they algebra, as you
can imagine, is identical. Except that the displacements are then all in this direction,

for the longitudinal one, but in this direction.

We will shortly enter the domain of waves to make you see the idea, the big
difference between transverse waves and longitudinal waves. Sound, which is a
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pressure wave, in my direction to you, the air is a pressure wave. It's doing this, so
the air oscillating in the same direction that it moves. That is a longitudinal wave. So
this is a nice moment to break. We'll break five minutes, and we'll start exactly five

minutes from now.

All right, thank you very much for the performance. That was prearranged, by the
way. So we're now ready to make the step to continuous medium whereby n goes
to infinity, well you could argue that it goes to as many atoms as we can line up on a

string-- goes to infinity.

And it should not come as a surprise of course that now you're going to get that the
entire string, which is now continuous mass so you no longer have individual beats,
that the entire industry is now going to oscillate as a sinusoid in its lowest mode. So
this is n equals 1. And then it's going to oscillate like this for n equals 2, n equals 2,
and n equals 3. Going up like this, and this goes like this. So that should not come

as a surprise. | will not pursue that today. We'll get back to that later.

What | want to mention, though, what is interesting, and that is that the ratios of
these normal mode frequencies will now be 1, 2, 3, 4, 5 and so on. So now you get
that the second mode is twice the frequency of the first, which is what we didn't
have there. That's the big difference between number of n, which is finite, and an

infinite number of these oscillators.

What | want to pursue today-- | will get back to this in the future. What | want to do
today is to generate a disturbance in a medium which has an infinite number of
coupled oscillators, which is a string. To generate in there. So | take a string and |

wiggle the end. And then | want to evaluate with you what's going to happen.

And so for this | need some assistance. Will someone-- Nicole, would you mind?

[INAUDIBLE]

Just hold this firmly in your hands. Now most of you may think that this is a spring
with a P, as in Peter. But no, it is a string with a T, as in Tom. You will see that. I'm

going to use this as a string. I'm going to put tension on it, T, which is what we
14



AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

needed, also for the end-coupled oscillators.

And the amount of mass that we have, we express that, normally, in terms of the
mass-per-unit length. Remember, in the other case we had little m divided by I. Well

we call that now mu. So that's how much mass per unit length we have.

And what | want to do now is to shake my hand, and then you tell me what you see.
You ready? There we go. Are you ready Nicole? What you see? Just tell me what

you see right after | do this. What did you see right after | did this?

[INAUDIBLE]

The disturbance moved. That's number one that we have to understand. Why does

it move?

Now look what happens at Nicole's side. | generate a pulse which is like this. | will
call that a mountain for now. And only look at the moment that the mountain
reaches her, and something comes back at me. And then stop looking because

thing begin to wander back and forth. And tell me what comes back at me.

So I'm going to send a mountain to Nicole. What came back at me?

[INTERPOSING VOICES].

A valley? Now I'm going to send a valley to Nicole. What do you think is coming
back? Very good. It's hard-- it's actually, you know, | don't know why it is, but it's
very hard to generate a valley. Let me do a mountain again. This is a mountain that
comes back as a valley. And I'll try a valley. OK, I'll try to do a valley. So | go down

and up. Yeah, that was a good one.

[LAUGHS].

And you that--

[LAUGHS]

Yeah. Well, because of you, it worked. Thank you very much, you did a great job.
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So now, we have to understand two things. And that is why does it propagates. And
why does a mountain come back as a valley, and why does a valley come back as a

mountain.

Continuous medium, infinite number of coupled oscillators. | start here with a piece
of that rope. Let's call this position x. And | call this position x plus delta x. | call this

y. | call this angle theta plus delta theta. And | call this angle theta.

We have a tension, T on the line, and mu is the mass per unit length. So you tell
me, what the mass for 1 meter is, and | know what mu is. It's the length-- the mass
per unit length. Well, if our displacements are not absurdly high, then we can make
the same assumption that we made with the beaded string. That the tension is the
same on both sides. It's an approximation, but for modest amplitudes, it's a very
reasonable approximation. So we have a T, here and we have T there. And they

are then, to a reasonable approximation, the same.

Just like with the beats, for modest amplitudes we don't have to worry about motion
in the x direction. The only thing that matters is the motion in the y direction. So | will
concentrate exclusively on the motion in this direction, which drives it back to
equilibrium. And so f of y, on this segment, is then minus T sine theta, because this
component is down, minus T sine theta plus T sine theta plus delta theta. Because

this component, in the y direction, is driving it away from equilibrium.

But for small angles, and we have to have small angles otherwise all our
assumptions are wrong-- the T's are not the same. But for small angles, the sine of
theta is the same as theta, in radians. And so this becomes a theta, this becomes a
theta plus delta of theta. And so this thing becomes T delta theta. That's an
approximation for small angles. Now | will apply Newton's Second Law. The amount
of mass that is in here is dm. And | will calculate, shortly, what dm is. It's a little bit of
mass. We're going to make dx go to zero-- infinitesimally small amount of mass.
And so that mass, times y double dot, must now be this force that we just

calculated. So it must be t delta theta.

But what is dm? Well we know that the length of the string is delta x, so dm must be
16



delta x times mu. Because mu is the amount of mass per unit length. And if my
length is delta x then dm is delta x. So | can write this now as delta x times mu times

y double dot equals T times delta theta. We're getting there.

Now since we're in the limiting case, we're going to make delta x zero. The tension
of theta, so that'll be coming, then, in this direction. The tension of theta is dy dx,
right? That is dy dx. And the reason why | use partial derivatives is that | think of it
as the time not changing. At any moment in time this is dy dx. That's the only

justification for the partial derivatives.

| take the derivative on this side and on this side in x. So the left side, | take d
tangent theta dx, and | do it on the right side. Now the derivative of the tangent of
theta, of the function, is one over the cosine squared of theta. That can't take you
more than 20 seconds to confirm that. You can do that in many different ways. So
this is the derivative of the function itself. And then of course | have to multiply it by

d theta dx. Because | take the whole function derivative in dx.

And so here | get, then, d2y dx squared. But for small angle approximation, cosine
squared of theta is 1. And so I'm going to substitute, now, this result into my

differential equation.

| read this as delta theta, which is here, and | read this, in my mind, as delta x,
which is here. Now mathematicians would probably never do that, but physicists
have no problems with that. So I'm going to write, now, here mu times delta x and
here | write d2y dt squared. | use partial derivatives, because I'm not changing x.

That's the justification for the partials.

And now | get T, and now this delta theta I'm going to write for it this, times delta x.
So now you get delta x times d2y dx squared. And now I'm doing something that
mathematicians would never do. I'm going to divide out delta x. Don't tell your

18.0... whatever people that | did that.

So now what you have is that mu divided by T times d2y dt squared, constant value

of X, is now d2y dx squared. And believe it or not, this is a big moment in our life.
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You have here a differential equation of y, which is a function of x and T, whereby
here you take the double derivative in time, and here you take the double

derivatives in space, in location.

What is a possible solution to this differential equation? You can just see it. By
looking at it, you immediately see what the solution must be. Any function, any
single-valued function-- you can come up with any one, | don't care which one-- any
single-valued function of x plus or minus a constant times T will satisfy this

differential equation. Just look at it. You can see immediately that it works.

Take the second derivative in time. You get a C square out, and you get the second
derivative of the function. Take the second derivative in x, you only get the second
derivative of the function and that's all. So all it requires is that C is the square root
of T divided by mu. Then | bet you a month's salary that any single-valued function

will satisfy this differential equation.

What is the dimension of that C? What is the dimensional of that C.

Meters per second.

Meters per second. It's a velocity. Because if | have apples here | must also have

apples there. And so this can only be an apple if C has the dimension of a velocity.

So therefore you might as well write this as plus or minus vT. And you might as well
as well write v for here, the velocity. And we might as well change, now, this
differential equation in a way more uniform way, which is what I'm going to do now,

which is one over v squared times d2y dt squared equals d2y dx squared.

And this equation is what is generally called the wave equation. It will be with us until
the end of the course, until death do us part. It is really a big moment because
you're going to see this equation many times for many different systems, but now

you have seen it being derived for this very specific case.

Let's now evaluate the meaning of that v. Well, if | have a, here, x, and here y, and |

pick just a function-- it could be a sine, it could be a cosine, | pick one is way more
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AUDIENCE:
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AUDIENCE:

PROFESSOR:

imaginative. | pick this one.

That's my function. It has to be single-valued, though, we have to be careful. It must
be single-valued. You cannot go back. That's my function. And so that's my

function, f times T equals zero.

Let us take, for v, always a positive number, for simplicity. I'm going to call it even
speed. Speed is always positive, right? And | want to know now, if | look a little later

in time, when there is a minus sign here, what that function looks like.

So at T equals zero | gave it to you. What would it look like a little bit later in time? If

there was a minus sign there. Any suggestions?

[INAUDIBLE]

The function has shifted in what direction?

[INAUDIBLE]

Use your hands. Who thinks it's in this direction, who thinks it's in this direction. Very
good. It's in this direction. So you will see, a little later in time, you will see it here.

And what is it doing? It is moving with speed v in that direction.

Now we're going to evaluate the plus sign. What will happen if we now look at the
function a little later in time. A little later in time. it has moved in this direction. And

it's moving with speed v in this direction.

So now, you can look through the meaning of this equation. You now understand
why when | wiggled here, why the string had no choice. It must propagate that
function that | generated, and it must propagate that with the speed square root of T
divided by mu. We derived the speed of propagation for that string. Mu is the mass
per unit length, T is the tension. If | ask you, is it obvious that the higher tensions
gives you a higher speed-- maybe. Is it completely obvious to me? Sort of, not quite,

but yeah, | accept that.

Is it obvious, if | make mu large, that | make it a very thick, very heavy per meter,

19



that the propagation speed is slower? Yeah, maybe. Now that | know the answer |

would say, yeah, it's quite obvious. But it's not so trivial.

So in any case, we have derived two things. We have derived that there is such a
thing as a speed, but we even have derived the speed itself. The square root of T
over mu. So if we had done the experiment again, with a higher tension, then the

pulse would've moved faster.

But now there is something else that we have to explain. Why on earth is a
mountain coming back as a valley. And why is a valley coming back as a mountain.
And that now is the result of boundary conditions. Some people who have lectured
8.03 make a very simple statement. They say 8.03 is only about two things, this

equation and boundary conditions. And all the rest follows. It's quite accurate.

So we have here the string. That Nicole and | were holding. And here is the end.
That's where Nicole was. | hope | spelled that correctly. And we know that that end
must stay fixed, cannot move. I'll put the line a little lower. I'll put it here. This is the

end.

And my pulse came in, this is the pulse. And let us evaluate the moment in time that

this part of the pulse reaches Nicole. You ready for that?

So this part is here. And the part that, yeah, maybe it's in heaven, is here. | have to
make this a little steeper to make it look alike. Make it a little steeper. And this, yeah.

Who knows what happened with that.

But Nicole knew very well that this point cannot move. Therefore, she very sneakily,
without telling you and me, generated a pulse that came back to me, which make
sure that all moments in time this point stood still. So at this very moment in time,
she must have generated the pulse which had this displacement. So that this part

exactly the same as this, and so that her hand stands still.

But she must have done that at every moment in time. She must have done that
when this part arrived, when this part arrived, when this part arrived, when that part

arrived. So that means, he must have generated a pulse on her side that is a valley
20



that now looks like this. So this part is here. And at this moment in time, all she has

to do is generate this pulse.

And so the net result is that if you took a photograph of this string at this moment in
time, you would see something very bizarre. It is the sum of this with this. And you
try to draw what that looks like. For one thing, this point will be here. That's for sure.

And then whatever you're going to see here, well you try to add the two up.

And this thing is moving in my direction. With speed v, because she is generating a
valley. And so the consequence of the boundary condition is, since this point is
fixed, a mountain must come back as a valley, and a valley must come back as a

mountain.

And given a little bit of time, when this point here has passed Nicole completely,
then there is, of course, a very nice healthy pulse on the way back to me, which is
mirrored now this way. The mountain is a valley, but it also has mirrored this way.
See, that's why | made the pulse purposefully asymmetric. And so that is what is

happening.

So now | want to do this experiment again with Nicole, of course, because she
knows how to do it. And you're going to look at this with completely different eyes.
Your eyes were closed when we did it the first time. You were blind, let's face it. But

now you've seen the light.

This is a big moment in your life because you now know, first of all, why it
propagates. And now, when it arrives there you know that the mountain becomes a
valley. So I'm just going to do exactly the same thing, only to allow you to look at it
now through different eyes. And that's what education is all about, regardless of
whether it's physics, or whether it is art. Without education you cannot appreciate it.

Now you can. Watch it. You ready for this, Nicole?

You see? It moves, it has no choice. And the mountain comes back as a valley. | will
do that once more, very clear. Boy, you deserve an A for this course, that's clear.

Oh whoa, you don't want to-- you don't-- I'll make it a B.
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[LAUGHTER].

| can change the boundary conditions | don't have to keep these points fixed. And |
can do that in following way. Here is my string. | have here a metal rod. We put oil
and grease on it so that it's completely frictionless in this direction. And we mount
here a massless ring, massless. But the tensions, of course, is there. And mass per
unit length is mu. None of that changes. But here is a massless ring, and here is a

rod with zero friction.

Those are very different boundary conditions. This point can now move up and
down. And it will. However, the shape of that string right here is now very special. At
all moments in time, what will the shape of this string be when we photograph it. No
matter when you photograph it. You can photograph it before the pulse is there,

after the pulses is there, at any moment in time. What will this point look like?

It comes in at 90 degrees. dy dx, if this is y, and this is x, at that location dy dx must
be zero. If it were not zero, so this would be zero. This would be zero. This is zero.

This is zero. This is zero. That is all zero.

If it weren't zero, if it was this, then there would be a force on this ring, because the
tension would be in this direction, but the ring has no mass. And so the acceleration
of the ring would be infinitely high, which we don't allow. So therefore, in the
extreme case that you can go to this situation, you will now see something very

different. You will see that the string, at all moments in time will have to be like this.

If now | send in a mountain, what do you think will come back?

A mountain?

A mountain comes back. A mountain goes in, mountain comes back. Who thinks if a
mountain goes in, a mountain comes back. Very good. And that's the consequence
of the fact that it is open now. Because the only reason why a mountain goes in and

a valley came back, there was only one reason, the end could not move.

But now the end can move, and | will demonstrate it to you. And now the mountain
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will come back as a mountain. We refer to this, in physics, as a closed end. And we
refer to this as an open end. And when you have an open end, and this is the pulse
that comes in, say it has amplitude A, then what come back at some point in time is

again a mountain going in this direction with speed v.

This comes in with speed v, we call that the incident pulse, and this we call that the
reflected pulse. This has amplitude A, and this has very interesting consequences.
Namely, at the moment that this point here reaches that massless ring, the
massless ring must go up by an amount 2A. Because it generates-- that ring
generates this pulse. And so the ring generates this pulse, but this one is also there,
and remember, you have to add the two together like this one was added to this,
that gives me zero. Now we have to add this A to that A, and so what you'll see is
that if here is your ring, it will go up 2A. So it will make a huge excursion, goes twice
as high as the incoming one, and then it will go back to 0, and then the mountain

rolls back. And needless to say, that we of course would like to demonstrate that.

Now, to make a rod which is nearly frictionless, it's difficult but we can use a lot of oil
and a lot of grease, and a lot of soap. So that was not our major hangup. But when

we looked at amazon.com, and we wanted to buy a massless ring--

[LAUGHTER]

Marcos and | really tried, but it didn't work. We couldn't buy a massless ring. And so

therefore, it is not so easy to demonstrate this in the way that | have there.

So we will demonstrate it to you in another way. And that is with this instrument. |
will first explain it. This is not a string. These are rods, all the same length, and they
are connected here with some metal. And so you can move these and then a
propagation, the pulse that you generate will propagate. So they're coupled, they
are-- | don't know how many there are, do you know how many there are? Ok let's

say | count 40, then there's 40 coupled oscillators.

And now | have the option, with this machine, that | can hold this one fixed, which is

then a closed end, but | can also let this one open, and then it's an open end. And
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so if | hold this one closed, and | send in a mountain here, then a valley will come
back. But if | keep it open, then | send in a mountain, then a mountain will come
back. And you should be able to see that the and gets a huge amplitude at the

moment that it reaches the maximum. And so that is what is on our plate.

Now, and we will make it extremely romantic for you, believe me. We're going to do
this in a very romantic way. | told you. So here | have a clip, a clip here, so | will first
lock this in place so that this end could not move. That's what | will do first. And from
this side I will then generate a mountain. The speed with which it propagates is

actually quite decent, not as fast as it was with the string.

And so | want you to see that, first of all, it propagates and that it comes back as a
valley. So the end, here, is now fixed. It's a fixed end. You ready? Mountain, and
now it's a valley. Did you see it? OK, now it's always a pain, because the system is a

very high q system, so it doesn't want to damp out.

| can try to send in--

[LAUGHTER]

Yeah, | know exactly what you're thinking. We are aware of this. If you try to calm it
down, you make it worse sometimes. | will now generate the valley, which is a little
harder, | don't know why it is, why it's a little harder, | have talked to my psychiatrist
about it. It's easier to go up and down then to go down and up. | don't know why
that is. So I'll go down and up, make a valley, and then when it comes back it's a

mountain.

There is goes, and it comes back as a mountain. Did you see it? Did you?

Yes.

If you didn't, just say so, and we can do it once more, but | don't think we have to.
Now comes the big thing. Now I'm going to make this end freely moving. So now it's
an open end, and | will generate a mountain now, and | want you to not only

appreciate that it comes back as a mountain, but, above all, that the end will have
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twice the amplitude at one moment in time, when the top of the mountain reaches
that end. And then, of course, it will go back to zero and the regular mountain will

roll back to me.

So if you're ready for this-- there goes the mountain, [INAUDIBLE].

[LAUGHTER]

And it comes back. What is so funny about that? Did you see that huge amplitude?
I'll do it once more because | don't want you to forget that. Now let's give it just 10

seconds to die-- oh boy, look, there's a whole, like an ocean.

I will it once more. I'm not going to try a valley because that's where the problem
comes in with me. | will simply go up, and then let's look again at the end and see
whether we can see that double amplitude of the mountain. Mountain, whoa, biggie!

Whoa, man! Whoa. OK, have a good weekend.
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