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MIT 8.03 Fall 2004 – Solutions to Problem Set 5 

Problem 5.1 — Piano galore 
√ √

(a) The frequency of the n-th mode of a string is νn = ωn/2π = n T/2L µ. Differentiating with respect 
to T gives 

dνn n 1 
= 

dT 4L Tµ  

n T 1 
= 

2L µ 2T 

1 
= νn2T 

We know that n = 1,  T = 250 N, νC5 = 512 Hz and dν = 0.5 Hz. Thus, dT = (0.5)(500)/512 N ≈ 
0.5 N.  

(b) Pianos have 88 keys. Many notes have two strings and many have three; some have only one string. 
A Steinway grand piano has a total of 216 strings. This translates into F = 216 × 250 N ≈ 5.4 104 N . 
This is huge; it’s about the weight of a mass of 54 thousand kg (54 tons)!! 

(c) The G5 will excite the second harmonic of C4 and you will hear G5. The fundamental of G5 will not 
excite G6. However, the second harmonic of G5 will excite G6 and you will hear G6. 

(d) A note which is a higher harmonic of G5 will be excited (eg. G6,D7, G7, B7). Also a note below G5 

which has G5 as one of its higher harmonics will be excited (e.g. G4, C4, G3, E
b 
3, C3, etc.). 

(e) No string is perfectly flexible and perfectly continuous. Furthermore, the restoring force on the string 
is linear only to a first approximation, so it is not possible for the strings to possess harmonics in 
perfect multiples of each other. Very shortly we will learn that the velocity is a function of frequency 
(or λ); a phenomenon called dispersion. So far we always assumed ideal strings for which v = T/µ  
(independent of ν). 

There is another reason for the difference in tone between G5 and the 6th harmonic of C3: a piano 
which is “in tune” is not tuned according to our scientific scale. The octaves are tuned in perfect 
multiples of 2 (frequency) but all other intervals are slightly altered. The perfect fifth is not so perfect 
after all. For more information see Waves (Berkeley Physics Course Vol. 3), by Crawford, problem 2.6 
pp 91-93. 

(f ) They had better go away since the beats are the result of a superposition of sinusoidals of the two 
nodes. 

Problem 5.2 – Holes in woodwind instruments 

(a) With holes C and B closed, the pipe is 37 cm long, open at both ends. Therefore, 

λ = 2L = 74  cm  
v ⇒ ν = = 446 Hz. 
λ 

(b) If the holes are large enough this is a pipe of length 18.5 cm, open at both ends. Thus, ν = 892 Hz. 

(c) With only hole B closed, the effective length of the pipe is AC so λ = 2(27.7 cm)  =  55.4 cm. Hence, 
ν = 600 Hz. 
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(d) With neither B or C closed,	 L is now approximately 18 cm, thus λ = 2(18.5 cm) = 37 cm. Hence, 
ν = 892 Hz. 

Problem 5.3 (French 6-12) — Plucked string 
A sketch of the string is shown below. 
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(a) Remember that the kinetic energy density of a wave y(x, t) in a string  is  

dK 1 ∂y 
)2 

= ,
dx 2 

µ 
∂t 

and the potential energy density is 

dU 1 ∂y 
)2 

= 
dx 2 

T
∂x 

. 

Here µ is the mass density and T is the tension in the string.

Then, the total energy of the string at t = 0  is 


E =	 K + U = U (K = 0  at  t = 0)  ∫ 
1 
( )2

∂y
= T dx

2 ∂x 

1 
∫ L ( )2

∂y
= T dx

2 0 ∂x 

1 2h 
)2 

= TL
2 L 

2h2T 
E	 = . 

L 
Since energy is conserved (we ignore any form of damping) the energy at t = 0 is the same as the 
energy at later times. 
Alternatively, we can calculate the potential energy of the string directly. The potential energy can 
be calculated by finding the amount by which the string, when deformed, is longer that when it is 
straight. This extension, multiplied by the assumed constant tension T , is the work done by us in the 
deformation. A displaced infinitesimal segment of a string is shown in the figure below. 

dx 

ds 
dy 

x	 x+dx 

2 



√ √ 

( 

( 

( 

√ √ 

{ 

Thus, for the segment, we have 

dU = T (ds − dx), 

where 

ds = dx2 + dy2 ( )2 

= dx 1 +  
∂y 
∂x 

If we assume that the transverse displacements are small, so that ∂y/∂x � 1, we can approximate the 
above expression using the binomial expansion to two terms: 

1 ∂y 
)2 

ds − dx ≈ dx.
2 ∂x 

Therefore, 

1 ∂y 
)2 

dU ≈ T dx
2 ∂x 

dU 1 ∂y 
)2 

⇒ = T . 
dx 2 ∂x 

(b) From our choice of coordinates, the shape of the string and that of all subsequent oscillations are odd 
functions. Hence, we can apply a Fourier transform to decompose the motion of the wave into sine 
functions only. They will have the form yn(x, t) =  An sin ωnt, where An is the amplitude of the n-th 
harmonic, ωn = nω1 and ω1 is the angular frequency of the first harmonic (fundamental). The initial 
shape of the string repeats at an angular frequency of ω1 because all harmonics repeat at an integer 
multiple of the first harmonic. 

We can compute ω1 from the relation ωn = knv. We know that the first harmonic has a wavelength 
λ1 = 2L. Hence, k1 = 2π/λ1 = π/L. Therefore, ω1 = πv/L = π/L T/µ. Then the initial pulse 
shape repeats every 2L µ/T seconds. Notice that this is the travel time of a pulse from one end of 
the string to the other, and back. 

Problem 5.4 — Fourier analysis 

(a) The function is 

2h x if 0 ≤ x < L/2Ly(x) =  − 2h x + 2h if L/2 ≤ x ≤ L,L 

and a sketch of y(x) is shown below 
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The most generic Fourier expansion is 

∞ 

y(x) =  An cos(knx) +  Bn sin(knx) 
n=0 

Since f (0) = 0, all cosine terms will vanish. Furthermore, 

y(L) = 0  
∞ 

Bn sin(knL) = 0. 
n=0 

Since, in general, Bn �= 0 then, 

sin(knL) = 0  

⇒ knL = nπ 
nπ 

kn = . 
L 

Hence, the Fourier expansion of y(x) is  

∞ )∑ ( nπ 
y(x) =  Bn sin x . 

L 
n=1 

Notice that the sum starts at n = 1.  The  n = 0 term equals zero so it does not contribute. We can 
find the value of Bn by multiplying both sides by sin(mπx/L) and integrating with respect to x: ∫ L ( mπ ) ∫ L ( mπ 

∞ ( nπ
sin x y(x) dx = sin x Bn sin x dx 

0 L 0 L L 
n=1 ∫ L ) ∞ L ) ( nπ )( mπ ∑ ( mπ

sin x y(x) dx = Bn sin x sin x dx. 
L L0 L 

n=1 0 

We recall the orthogonality property of the sine function, 

L ) ( nπ )( mπ 0  if  m �= n
sin x sin x dx = 

L 
0 L L 

2 if m = n. 

Hence, 

L )( mπ L
sin 

L
x y(x) dx = Bm 2 

. 
0 

The Fourier coefficients then are 

L )2 
∫ ( nπ 

Bn = sin x y(x) dx 
L 0 L 

L ( )
2 
∫ L/2 ( nπ ) 2h 

∫ ( nπ ) 2h 
= sin x x dx  + sin x − x + 2h dx 

L 0 L L L/2 L L   
4h ( nπ 


n2π2 2 ︸ ︷︷ ︸

=0


= 2 sin  − sin(nπ) 

8h ( nπ 
= sin 

2 
. 

n2π2 
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A few values of Bn are 

8h B3 = − 8h 8hB1 = π2 9π2 B5 = 25π2 . 

Note that Bn is zero for all even n and that the sign of Bn alternates for odd n. We could have 
predicted that. Why? 

The Fourier expansion of y(x) then is 

∞ ) ( nπ )∑ 8h ( nπ 
y(x) =  

n2π2 
sin sin x .

2 L 
n=1 

A graph  of  y(x) for values x <  0 and  x > L  and n = 1  → 999 is shown below. 

y(x) (n=999) 
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Note that the spatial period of this function is 2L and the mean value over this period is zero. Alter-
natively, we could have shifted the function so that the peak was at x = 0 and expanded in terms of 
cosines over a spatial period of 2L. All functions would then be even. Since all we are doing is shifting 
the function by L/2 we expect that the Fourier coefficients of the sine expansion, Bn, are equal in 
magnitude to the Fourier coefficients An in the cosine expansion 

∞ )∑ ( nπ 
y(x) =  An cos x . 

L 
n=1 

It easy to see why the magnitudes of the coefficients of the cosine and sine series must equal. Consider 
the graphs of the first harmonic for each series. 
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y=B
1
sin(πx/L) 

0 L/2 L 
y=A

1
cos(πx/L) 

−L/2 0 L/2 

It is then clear that A1 = B1. The case for the third harmonics is similar. Remember that B3 < 0. 

y=B
3
sin(3πx/L) 

0 L/2 L 
B3 

0 

−B3 

y=A
3
cos(3πx/L) 

A3 

0 

−A3 
−L/2 0 L/2 

Then, A3 = −B3. We  thus  have  

A1 = B1 A3 = −B3 A5 = B5 A7 = −B7 . . .  

Alternatively, we could have computed the Fourier expansion where the spatial wavelength is L. In  
that case, the decomposition of the function (peak at x = 0)  

2h x + h if −L/2 ≤ x <  0Ly(x) =  − 2h x + h if 0 ≤ x ≤ L/2,L 

would have the form 
∞ ∑ 2nπ 

y(x) =  Cn cos x . 
L 

n=0 

Convince yourself that sine terms are not allowed in this particular (even) Fourier decomposition. The 
Fourier expansion, in this case, would be 

∞ 
h ∑ 2h 2nπ 

y(x) =  + 
n2π2 

(1 − cos nπ) cos  x .
2 L 

n=1 

Note that the constant term h/2 is the average value of y(x) over one spatial period. This constant 
comes from the n = 0  term.  

The graph of this Fourier expansion is shown below. 
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y(x) (n=999) 
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This expansion now is even, has a non-zero mean average (h/2) and a spatial period L. 

Since this Fourier decomposition gives the shape of the original function in the interval [−L/2, L/2], 
it is a correct mathematical solution. In part (c), however, we will see that this decomposition is not 
physically correct if we let the string evolve in time. 

(b) We know how sinusoids evolve in time. For example, the sinusoid y(x) =  A sin(kx) evolves as y(x, t) =  
A sin(kx) cos(ωt + φt), where ω is the frequency of oscillations given by the dispersion relation and 
φt is the temporal phase of the oscillations. The initial condition y(x, 0) = y(x) requires φt = 0.  
Each Fourier component of the string shape Bn sin(knx) will evolve as Bn sin(knx) cos(ωnt), where 
ωn = knv = nπ T /µ/L. The string shape then evolves as 

∞ ) ( nπ ) )∑ 8h ( nπ ( nπ 
y(x, t) =  

n2π2 
sin sin x cos vt .

2 L L 
n=1 

where v = T/µ  is the speed of propagation. 

Could we also have said that the shape of the string evolves as 

∞ 
h ∑ 2h	 2nπ 2nπ 

y(x, t) =  + 
n2π2 

(1 − cos nπ) cos  x cos vt ?
2	 L L 

n=1 

The answer is NO! Try it, you will notice that at t = T1/4 the entire string is at position h/2 (the ends 
are no longer fixed). 

Below are the superpositions of the Fourier standing waves for t = T1/8, T1/4 and  T1/2 (n = 1  → 999). 
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(c) There is an alternative way of thinking about the time evolution. The moment you release the string, 
one triangle (height h/2) will travel to the right and the other to the left. 

The boundary condition y(±L, t) = 0 must hold at all times. The graph on the next page shows the 
travelling waves and the resultant at t = T/8. Recall that fixed string ends imply a reflection coefficient 
of −1. Hence, incident waves flip at the ends of the string. Initially, Wave 1 travels to the left and 
Wave 2 travels to the right. Notice that 999/2 evolving standing waves and the 2 traveling waves give 
results that are indistinguishable. 
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Problem 5.5 Fourier series 
The most generic Fourier expansion is 

∞ 

y(x) =  An cos (knx + φn) . 
n=0 

The functions in this problem have the boundary conditions y(0, t) =  y(L, t) = 0, which imply φn = π/2 
and kn = πn/L. Hence, 

∞ )∑ ( nπ 
y(x) =  An sin x . 

L 
n=1 

Note that the sum now starts from n = 0 rather than n = 1.  The  n = 0 term equals zero so it does not 
contribute to the sum. The Fourier coefficients, An, can be bound by multiplying the latter expression by 
sin (kmx) and integrating: ∫ L ∫ ∞L ∑ 

sin (kmx) y(x) dx = sin (kmx) An sin (knx) dx 
0 0 n=1 

∞ L 

= An sin (knx) sin  (kmx) dx 
n=1 0 

L 
= Am 2 

L )2 
∫ ( nπ ⇒ Am = y(x) sin  dx 

L 0 L 

(a) The function is 

y(x) =  Ax(1 − x) 
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From our discussion above, 

L )2 
∫ ( nπ 

An = y(x) sin  x dx 
L 0 L 

L )2 
∫ ( nπ 

= Ax(1 − x) sin  x dx 
L 0 L   
2AL2 = 2 − 2 cos  nπ −nπ sin nπ 
π3n3 ︸ ︷︷ ︸ ︸ ︷︷ ︸ 

+1 n even -1 n odd  =0 ∀n 

8AL2 1 ⇒ An = n = 1, 3, 5, 7 . . .  
π3 n3 

(b) The Fourier expansion of a trigonometric function is itself. By inspection, the Fourier coefficients are 

A if n = 1  
An = 

0  if  n �= 0.  

More formally, 

L ( π ) )2 
∫ ( nπ 

An = A sin x sin x dx 
L 0 L L 

A if n = 1  
= 

0  if  n �= 0.  

(c) The function is 

A sin 2π x if 0 ≤ x < L/2Ly(x) =  
0  if  L/2 ≤ x ≤ L. 

Hence, the Fourier coefficients are 

L )2 
∫ ( nπ 

An = y(x) sin  dx 
L 0 L 

2A 
∫ L/2 )2π ( nπ 

= sin x sin x dx 
L 0 L L 
4A 1 ( nπ 

= − sin 
π n2 − 4 2 

We now must be careful because An is ill-defined at n = 2. We can evaluate A2 using L’Hopital’s rule: 

π4A 2 cos nπ ∣ 
A2 = − 2 ∣ 

π 2n ∣ 
n=2 

A 
= 

2 
. 

When n is even (except n = 2), An = 0. Hence,  0  if  n = 4, 6, 8 . . .   
An = A if n = 22   4A sin(nπ/2) if n = 1, 3, 5, 7 . . .π 4−n2 
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Problem 5.6 — Pianos can talk back 

(a) The sounds that you make are a superposition of different frequencies. Each string inside the piano 
will respond to its harmonics. Hence, the sound of your voice will be broken down into frequencies and 
selected frequencies will be played back by the piano. In this way, the piano is performing a Fourier 
analysis of your sound. 

The piano need not be in tune, it needs only to possess enough components to make your sound 
recognizable. 

(b) The ratios of the harmonic frequencies of the strings will not be exactly 1 : 2 : 3  . . .  because the piano 
is not tuned that way (see problem 5.1). In addition, the oscillations will not be in phase because of 
the difference in travel times of your sound to the strings (about 1 meter in 3 msec). In 3 msec the 
330 Hz string will perform one complete oscillation; the 1000 Hz will make 3 oscillations, etc. 

(c) Apparently, phase in unimportant. 

(d) We cannot explain this. But it is the way our brains work. Perhaps evolution did not discover any 
survival value in keeping the phase. 
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