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Introduction to Magnetic Fields 

8.1  Introduction 

r 
We have seen that a charged object produces an electric field E at all points in space. In a

r 
similar manner, a bar magnet is a source of a magnetic field B . This can be readily 
demonstrated by moving a compass near the magnet. The compass needle will line up 
along the direction of the magnetic field produced by the magnet, as depicted in Figure 
8.1.1. 

Figure 8.1.1 Magnetic field produced by a bar magnet 

Notice that the bar magnet consists of two poles, which are designated as the north (N) 
and the south (S). Magnetic fields are strongest at the poles. The magnetic field lines 
leave from the north pole and enter the south pole. When holding two bar magnets close 
to each other, the like poles will repel each other while the opposite poles attract (Figure 
8.1.2). 

Figure 8.1.2 Magnets attracting and repelling 

Unlike electric charges which can be isolated, the two magnetic poles always come in a 
pair. When you break the bar magnet, two new bar magnets are obtained, each with a 
north pole and a south pole (Figure 8.1.3). In other words, magnetic “monopoles” do not 
exist in isolation, although they are of theoretical interest.   

Figure 8.1.3 Magnetic monopoles do not exist in isolation 
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rr 
How do we define the magnetic field B ? In the case of an electric field E , we have 
already seen that the field is defined as the force per unit charge: 

r

Fe 

r

E
 (8.1.1)
=


q 

r

However, due to the absence of magnetic monopoles, B must be defined in a different 
way. 

8.2  The Definition of a Magnetic Field 

To define the magnetic field at a point, consider a particle of charge q and moving at a 
velocity v . Experimentally we have the following observations: r

r

(1) The magnitude of the magnetic force FB exerted on the charged particle is proportional 

to both v and q. 

r 

r

r

r 
F  depends on vB 

 vanishes when v 
r

r

(2) The magnitude and direction of and B . 


rr

r

r 
. However, when v 

is perpendicular to the plane formed by v 
r 

(3) The magnetic force FB is parallel to B  makes an 

angle θ  with B , the direction of FB  and B , 

r


and the magnitude of FB  is proportional to sinθ . 

(4) When the sign of the charge of the particle is switched from positive to negative (or 
vice versa), the direction of the magnetic force also reverses. 

Figure 8.2.1 The direction of the magnetic force 

The above observations can be summarized with the following equation: 

rr
FB 

r
= qv × B (8.2.1) 
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The above expression can be taken as the working definition of the magnetic field at a 
point in space. The magnitude of FB  is given by 

| |  sin  θ (8.2.2)FB = q  vB  

The SI unit of magnetic field is the tesla (T): 

Newton N N1 tesla  = 1 T  = 1 = 1 = 1 
(Coulomb)(meter/second) C m/s ⋅ A m ⋅ 

r

r

=
 410 G .
Another commonly used non-SI unit for B is the gauss (G), where 1T 

rris always perpendicular to v 
r 

Note that FB  and B , and cannot change the particle’s speed 
v (and thus the kinetic energy). In other words, magnetic force cannot speed up or slow 
down a charged particle. Consequently, FB  can do no work on the particle: 

r

rrrrr r
 r
 r
dW = FB ⋅ d (
 ×
B
)
⋅
 dt =
q(
 ×v v B)
⋅
 dt =
0 (8.2.3)
s =  q v v 

8.3  Magnetic Force on a Current-Carrying Wire 

rThe direction of v , however, can be altered by the magnetic force, as we shall see below. 

We have just seen that a charged particle moving through a magnetic field experiences a 
r 
Fmagnetic force B . Since electric current consists of a collection of charged particles in 

motion, when placed in a magnetic field, a current-carrying wire will also experience a 
magnetic force.  

Consider a long straight wire suspended in the region between the two magnetic poles. 
The magnetic field points out the page and is represented with dots (•). It can be readily 
demonstrated that when a downward current passes through, the wire is deflected to the 
left. However, when the current is upward, the deflection is rightward, as shown in Figure 
8.3.1. 

Figure 8.3.1 Deflection of current-carrying wire by magnetic force 
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To calculate the force exerted on the wire, consider a segment of wire of length l  and 
cross-sectional area A, as shown in Figure 8.3.2. The magnetic field points into the page, 
and is represented with crosses ( X ). 

Figure 8.3.2 Magnetic force on a conducting wire 

The charges move at an average drift velocity vr d . Since the total amount of charge in this 
segment is Qtot ( l) , where n is the number of charges per unit volume, the total = q  nA
magnetic force on the segment is 

r r r r r r r 
FB = Qtot vd × B = qnA  l(vd × B)  =  I (l× B) (8.3.1) 

r 
where I = nqv A , and l  is a length vector with a magnitude l and directed along thed 

direction of the electric current. 

For a wire of arbitrary shape, the magnetic force can be obtained by summing over the 
forces acting on the small segments that make up the wire. Let the differential segment be 
denoted as d s r (Figure 8.3.3). 

Figure 8.3.3 Current-carrying wire placed in a magnetic field 

The magnetic force acting on the segment is 

dF 
r 

B = Id  s r× B 
r 

(8.3.2) 

Thus, the total force is  

r b r r 
F = I d  s × B (8.3.3)B ∫a 
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where a and b represent the endpoints of the wire. 

r 
As an example, consider a curved wire carrying a current I in a uniform magnetic field B , 
as shown in Figure 8.3.4. 

Figure 8.3.4 A curved wire carrying a current I. 

Using Eq. (8.3.3), the magnetic force on the wire is given by 

r r r r 
F = I ( ∫b

d r s )× B =  I l× B (8.3.4)B a 

r 
where l is the length vector directed from a to b. However, if the wire forms a closed 
loop of arbitrary shape (Figure 8.3.5), then the force on the loop becomes 

F 
r 

= I ( �∫ d r s )×B 
r 

(8.3.5)B 

Figure 8.3.5 A closed loop carrying a current I in a uniform magnetic field. 

Since the set of differential length elements d r s form a closed polygon, and their vector 
sum is zero, i.e., �∫ d s r = 0 . The net magnetic force on a closed loop is F 

r 
B = 0 

r 
. 

Example 8.1: Magnetic Force on a Semi-Circular Loop 

Consider a closed semi-circular loop lying in the xy plane carrying a current I in the 
counterclockwise direction, as shown in Figure 8.3.6.  
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Figure 8.3.6 Semi-circular loop carrying a current I 

A uniform magnetic field pointing in the +y direction is applied. Find the magnetic force 
acting on the straight segment and the semicircular arc. 

Solution: 

Let B 
r 

= B ĵ and F 
r

1  and F 
r 

2 the forces acting on the straight segment and the semicircular 
parts, respectively. Using Eq. (8.3.3) and noting that the length of the straight segment is 
2R, the magnetic force is  

r 
F1 = I × j k(2R ̂i) ( B ̂ ) = 2IRB  ˆ 

where k̂ is directed out of the page. 

To evaluate F 
r 

2 , we first note that the differential length element d s r on the semicircle can 

be written as d s r = ds  θ̂ = Rdθ ( sin  − θ î + cos  θ ĵ) . The force acting on the length element 
d s r  is 

dF 
r 

2 = Id  s r ×B 
r 

= IR d  θ ( sin  − θ î + cos  θ ĵ × B ̂ ) = −  IBR  d  ˆ) (  j sin  θ θ  k 

r 
Here we see that dF2 points into the page. Integrating over the entire semi-circular arc, 
we have 

F 
r 

2 = −IBR k̂ ∫0 

π 
sin d = −2 ˆθ θ  IBR k 

Thus, the net force acting on the semi-circular wire is 

r r r r 
Fnet = F1 + F2 = 0 

This is consistent from our previous claim that the net magnetic force acting on a closed 
current-carrying loop must be zero. 
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8.4  Torque on a Current Loop 

What happens when we place a rectangular loop carrying a current I in the xy plane and 
r 

switch on a uniform magnetic field B = B î which runs parallel to the plane of the loop, 
as shown in Figure 8.4.1(a)? 

Figure 8.4.1 (a) A rectangular current loop placed in a uniform magnetic field. (b) The 
magnetic forces acting on sides 2 and 4. 

From Eq. 8.4.1, we see the magnetic forces acting on sides 1 and 3 vanish because the 
r r r 

length vectors l1 = −b î and l3 = b î are parallel and anti-parallel to B and their cross 
products vanish. On the other hand, the magnetic forces acting on segments 2 and 4 are 
non-vanishing: 

⎧F 
r 

= −I ( a ĵ) (  × B î) = IaB  k̂⎪ 2 
⎨ r  (8.4.1) 
⎪F = I ( ) (  a ĵ × B î) = −IaB  k̂⎩ 4 

r r 
with F2 pointing out of the page and F4 into the page. Thus, the net force on the 
rectangular loop is 

r r r r r r 
F = F + F  + F  + F  = 0 (8.4.2)net  1 2 3 4  

r r 
as expected. Even though the net force on the loop vanishes, the forces F2  and F4 will 
produce a torque which causes the loop to rotate about the y-axis (Figure 8.4.2). The 
torque with respect to the center of the loop is 

r ⎛ b ⎞ ⎛ b ⎞ ⎛ b ⎞ ⎛ b ⎞× +  i ×F = −  i ×(  )  + i ( IaB τ = − î F 
r ˆ r ˆ IaBk̂ ˆ × −  k̂ )⎜ ⎟ 2 ⎜ ⎟ 4 ⎜ ⎟ ⎜ ⎟⎝ 2 ⎠ ⎝ 2 ⎠ ⎝ 2 ⎠ ⎝ 2 ⎠ 

(8.4.3) 

= ⎛⎜ 
IabB + IabB ⎞

⎟ ĵ =  IabB ̂j =  IAB ̂j
⎝ 2 2 ⎠ 
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where A = ab represents the area of the loop and the positive sign indicates that the 
rotation is clockwise about the y-axis. It is convenient to introduce the area vector 
r 
A = An̂ where n̂ is a unit vector in the direction normal to the plane of the loop. The 
direction of the positive sense of n̂ is set by the conventional right-hand rule. In our case, 
we have ˆ ˆn =  +k  . The above expression for torque can then be rewritten as 

r r r 
τ = IA B  (8.4.4)× 

r 
Notice that the magnitude of the torque is at a maximum when B is parallel to the plane 

r 
of the loop (or perpendicular to A ). 

r 
Consider now the more general situation where the loop (or the area vector A ) makes an 
angleθ  with respect to the magnetic field.  

Figure 8.4.2 Rotation of a rectangular current loop 

From Figure 8.4.2, the lever arms and can be expressed as: 

2r r ( ) 4 
ˆ ˆsin cos 

2 
b θ θ= − = −i  +  k  r  r  (8.4.5) 

and the net torque becomes 

( ) (  )  2 2 4 4 2 2 
ˆ ˆ ˆ2  2  sin  cos  

2 
b IaBθ θ= ×  + ×  =  ×  = ⋅  −  ×τ r F  r F  r F  i  +  k  k  

r r rr r rr 

(8.4.6) 
ˆsinIabB Iθ= ×j =  A  B  

r r

For a loop consisting of N turns, the magnitude of the toque is 

τ NIAB sinθ=  (8.4.7) 

The quantity NIA 
r

 is called the magnetic dipole moment μr : 

NIμ = A 
rr

 (8.4.8) 
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rFigure 8.4.3 Right-hand rule for determining the direction of μ

r 
Ais the same as the area vector rμThe direction of (perpendicular to the plane of the 

loop) and is determined by the right-hand rule (Figure 8.4.3). The SI unit for the magnetic 
2dipole moment is ampere-meter2 (A m ) r. Using the expression for μ

on a current-carrying loop can be rewritten as 
, the torque exerted ⋅


rrr μτ = × B (8.4.9) 


r
rrτ = ×p E  
in the presence of an electric field E . Recalling that the 

The above equation is analogous to in Eq. (2.8.3), the torque exerted on an 
r
relectric dipole moment p 

r
r ⋅ [see Eq. (2.8.7)], a similar form is p Epotential energy for an electric dipole is U = − 

expected for the magnetic case. The work done by an external agent to rotate the 
magnetic dipole from an angle θ0 to θ is given by 

Wext = ∫θ

θ 
d ′ = ∫θ

θ 
(μB sin  θ ′)dθ ′ = μB (cos  0 ) 

(8.4.10)
τ θ  θ − cos  θ 

0 0 

= ΔU U U  − 0 = 

Once again, Wext = −W , where W is the work done by the magnetic field. Choosing 
U0 = 0 at θ0 = π / 2  , the dipole in the presence of an external field then has a potential 
energy of 

r
rμ ⋅BμB θ
U = − 
 = − 
 (8.4.11)
cos 

r


r

rThe configuration is at a stable equilibrium when μ
= −μB . On the other hand, when μ

is aligned parallel to B , making U a 
r


minimum with U and B are anti-parallel,min 

Umax = +μB is a maximum and the system is unstable.  
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8.4.1 Magnetic force on a dipole  

As we have shown above, the force experienced by a current-carrying rectangular loop 
(i.e., a magnetic dipole) placed in a uniform magnetic field is zero. What happens if the 
magnetic field is non-uniform? In this case, there will be a net force acting on the dipole.  

magnet, as shown in Figure 8.4.4. 

rμConsider the situation where a small dipole is placed along the symmetric axis of a bar 

Figure 8.4.4 A magnetic dipole near a bar magnet. 

The dipole experiences an attractive force by the bar magnet whose magnetic field is non­
uniform in space. Thus, an external force must be applied to move the dipole to the right. 
The amount of force Fext exerted by an external agent to move the dipole by a distance 
Δx is given by 

Fext Δ =  ext B x  ( )  B x  B x  x W  = Δ  U = −  μ ( + Δ  x) + μB x  = −  μ[ (  + Δ  x) − (  )]  (8.4.12) 

where we have used Eq. (8.4.11). For small Δx , the external force may be obtained as     

B x (  )]  Fext = −μ [ (  + Δx) − B x  = −μ dB  (8.4.13)
Δx dx 

which is a positive quantity since dB dx / < 0 , i.e., the magnetic field decreases with 
increasing x. This is precisely the force needed to overcome the attractive force due to the 
bar magnet. Thus, we have  

dB d = μ 
r
rμ ⋅BFB (
 ) (8.4.14)
=


dx dx 

rMore generally, the magnetic force experienced by a dipole μ
magnetic field B can be written as 

placed in a non-uniform 
r


rrr
FB = ∇(
μ ⋅B) (8.4.15) 


where 
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∇ =  ∂ î + ∂ ĵ + ∂ k̂ (8.4.16)
∂x ∂y ∂z 

is the gradient operator. 

8.4.2 Torques on a Dipole in a Constant Magnetic Field Animation 

“…To understand this point, we have to consider that a [compass] needle 
vibrates by gathering upon itself, because of it magnetic condition and 
polarity, a certain amount of the lines of force, which would otherwise 
traverse the space about it…”   

Michael Faraday [1855] 

Consider a magnetic dipole in a constant background field.  Historically, we note that 
Faraday understood the oscillations of a compass needle in exactly the way we describe 
here. We show in Figure 8.4.5 a magnetic dipole in a “dip needle” oscillating in the 
magnetic field of the Earth, at a latitude approximately the same as that of Boston.  The 
magnetic field of the Earth is predominantly downward and northward at these Northern 
latitudes, as the visualization indicates.  

Figure 8.4.5 A magnetic dipole in the form of a dip needle oscillates in the magnetic 
field of the Earth (link) 

To explain what is going on in this visualization, suppose that the magnetic dipole vector 
is initially along the direction of the earth’s field and rotating clockwise.  As the dipole 
rotates, the magnetic field lines are compressed and stretched. The tensions and pressures 
associated with this field line stretching and compression results in an electromagnetic 
torque on the dipole that slows its clockwise rotation.  Eventually the dipole comes to rest. 
But the counterclockwise torque still exists, and the dipole then starts to rotate 
counterclockwise, passing back through being parallel to the Earth’s field again (where 
the torque goes to zero), and overshooting.   

As the dipole continues to rotate counterclockwise, the magnetic field lines are now 
compressed and stretched in the opposite sense.  The electromagnetic torque has reversed 
sign, now slowing the dipole in its counterclockwise rotation. Eventually the dipole will 
come to rest, start rotating clockwise once more, and pass back through being parallel to 
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the field, as in the beginning.  If there is no damping in the system, this motion continues 
indefinitely.   

Figure 8.4.6 A magnetic dipole in the form of a dip needle rotates oscillates in the 
magnetic field of the Earth.  We show the currents that produce the earth’s field in this 
visualization (link) 

What about the conservation of angular momentum in this situation?  Figure 8.4.6 shows 
a global picture of the field lines of the dip needle and the field lines of the Earth, which 
are generated deep in the core of the Earth.  If you examine the stresses transmitted 
between the Earth and the dip needle in this visualization, you can convince yourself that 
any clockwise torque on the dip needle is accompanied by a counterclockwise torque on 
the currents producing the earth’s magnetic field.  Angular momentum is conserved by 
the exchange of equal and opposite amounts of angular momentum between the compass 
and the currents in the Earth’s core.    

8.5  Charged Particles in a Uniform Magnetic Field 

If a particle of mass m moves in a circle of radius r at a constant speed v, what acts on the 
particle is a radial force of magnitude F mv= 2 / r that always points toward the center 
and is perpendicular to the velocity of the particle. 

r

In Section 8.2, we have also shown that the magnetic force FB always points in the 

r

r
r

direction perpendicular to the velocity v 
FB can do not work, it can only change the direction of v 

r

 of the charged particle and the magnetic field B . 


Since but not its magnitude. 
r


r 

rr
r 

What would happen if a charged particle moves through a uniform magnetic field B 
its initial velocity v at a right angle to B ? For simplicity, let the charge be +q and the 

 with 

direction of B be into the page.  It turns out that FB will play the role of a centripetal 
force and the charged particle will move in a circular path in a counterclockwise direction, 
as shown in Figure 8.5.1. 
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r
 rFigure 8.5.1 Path of a charge particle moving in a uniform B field with velocity v 
r 

initially perpendicular to B . 

With 

qvB =
2mv (8.5.1)

r 

the radius of the circle is found to be 

r = mv 
qB 

(8.5.2) 

The period T (time required for one complete revolution) is given by 

T = 2 r 
v 
π = 2 

v 
π mv  

qB  
= 2 m 

qB  
π (8.5.3) 

Similarly, the angular speed (cyclotron frequency) ω of the particle can be obtained as 

v qB  ω = 2π f = =  (8.5.4)
r m 

r
If the initial velocity of the charged particle has a component parallel to the magnetic 
field B , instead of a circle, the resulting trajectory will be a helical path, as shown in 
Figure 8.5.2: 

r
Figure 8.5.2 Helical path of a charged particle in an external magnetic field. The velocity 
of the particle has a non-zero component along the direction of B . 
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8.5.1 Charged Particle Moving in a Uniform Magnetic Field Animation  

Figure 8.5.3 shows a charge moving toward a region where the magnetic field is 
vertically upward. When the charge enters the region where the external magnetic field is 
non-zero, it is deflected in a direction perpendicular to that field and to its velocity as it 
enters the field.  This causes the charge to move in an arc that is a segment of a circle, 
until the charge exits the region where the external magnetic field in non-zero.  We show 
in the animation the total magnetic field which is the sum of the external magnetic field 
and the magnetic field of the moving charge (to be shown in Chapter 9): 

r ×B 
r

= μ0 qv r̂ 
(8.5.5)

4π r 2 

The bulging of that field on the side opposite the direction in which the particle is pushed 
is due to the buildup in magnetic pressure on that side.  It is this pressure that causes the 
charge to move in a circle.   

Figure 8.5.3 A charged particle moves in a magnetic field that is non-zero over the pie- 
shaped region shown. The external field is upward (link) 

Finally, consider momentum conservation. The moving charge in the animation of Figure 
8.5.3 changes its direction of motion by ninety degrees over the course of the animation. 
How do we conserve momentum in this process?  Momentum is conserved because 
momentum is transmitted by the field from the moving charge to the currents that are 
generating the constant external field.   This is plausible given the field configuration 
shown in Figure 8.5.3. The magnetic field stress, which pushes the moving charge 
sideways, is accompanied by a tension pulling the current source in the opposite direction. 
To see this, look closely at the field stresses where the external field lines enter the region 
where the currents that produce them are hidden, and remember that the magnetic field 
acts as if it were exerting a tension parallel to itself. The momentum loss by the moving 
charge is transmitted to the hidden currents producing the constant field in this manner.   

8.6  Applications 

There are many applications involving charged particles moving through a uniform 
magnetic field.  
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8.6.1 Velocity Selector 

r r 
In the presence of both electric field E and magnetic field B , the total force on a charged 
particle is 

F 
r 

= q (E 
r 

v r B 
r ) (8.6.1)+ ×  

This is known as the Lorentz force. By combining the two fields, particles which move 
with a certain velocity can be selected. This was the principle used by J. J. Thomson to 
measure the charge-to-mass ratio of the electrons. In Figure 8.6.1 the schematic diagram 
of Thomson’s apparatus is depicted.  

Figure 8.6.1 Thomson’s apparatus 

The electrons with charge q = −e  and mass m are emitted from the cathode C and then 
accelerated toward slit A. Let the potential difference between A and C beVA −VC = ΔV . 
The change in potential energy is equal to the external work done in accelerating the 
electrons: Δ =U Wext = Δ = −eq V  ΔV . By energy conservation, the kinetic energy gained 
is K − U  mv  2 / 2 . Thus, the speed of the electrons is given byΔ = Δ =  

(8.6.2)2e V  v 
m 
Δ =

If the electrons further pass through a region where there exists a downward uniform 
electric field, the electrons, being negatively charged, will be deflected upward. However, 
if in addition to the electric field, a magnetic field directed into the page is also applied, 

r r 
then the electrons will experience an additional downward magnetic force ev B− × . When 
the two forces exactly cancel, the electrons will move in a straight path. From Eq. 8.6.1, 
we see that when the condition for the cancellation of the two forces is given by eE = evB , 
which implies  

E v =  (8.6.3)
B 

In other words, only those particles with speed v E= / B will be able to move in a straight 
line. Combining the two equations, we obtain 
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e E 2 

= (8.6.4)
m 2(ΔV B  ) 2 

By measuring E , ΔV and B , the charge-to-mass ratio can be readily determined. The 
most precise measurement to date is e m/ = 1.758820174(71) ×1011  C/kg . 

8.6.2 Mass Spectrometer 

Various methods can be used to measure the mass of an atom. One possibility is through 
the use of a mass spectrometer. The basic feature of a Bainbridge mass spectrometer is 
illustrated in Figure 8.6.2. A particle carrying a charge +q is first sent through a velocity 
selector. 

Figure 8.6.2 A Bainbridge mass spectrometer 


The applied electric and magnetic fields satisfy the relation E vB so that the trajectory
= 
of the particle is a straight line. Upon entering a region where a second magnetic field 
r 
B0 pointing into the page has been applied, the particle will move in a circular path with 
radius r and eventually strike the photographic plate. Using Eq. 8.5.2, we have 

mv r =
0qB 

(8.6.5) 

Since v E  / ,B=  the mass of the particle can be written as 

m = 0qB r 
v 

= 0qB Br 
E 

(8.6.6) 
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8.7  Summary 

rmagnetic forceThe acting on a charge  traveling at a velocity q v• 
r

in a magnetic 
field B is given by 

rr r
FB × B
= qv 

r
l


r

• The magnetic force acting on a wire of length 

• The magnetic force generated by a small portion of current I of length ds 

• The torque τ acting on a close loop of wire of area A carrying a current I in a 

r

r
r 
Buniform magnetic field is 

carrying a steady current I in a 
magnetic field B is 

rrr
FB = I ×B
l


r

dFB in 

r

a magnetic field B is 

rr r
dFB = I d  ×B
s 

r
r
rτ 

is a vector which has a magnitude of A and a direction perpendicular to 

= I ×A B  

r 
Awhere 

the loop. 

•	 The magnetic dipole moment of a closed loop of wire of area A carrying a 
current I  is given by 

r
rμ = IA 

r

rr

•	 The torque exerted on a magnetic dipole μ

τ = ×μ 

• The potential energy of a magnetic dipole placed in a magnetic field is  

placed in an external magnetic field 
r

B is 

r

B


r
rμ ⋅BU = − 
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 enters a magnetic field of magnitude B with a •	 If a particle of charge q and mass m
velocity v perpendicular to the magnetic field lines, the radius of the circular path r

that the particle follows is given by 

mv r = 
| |q B  

and the angular speed of the particle is 

q Bω = | |
m 

8.8  Problem-Solving Tips 

r

In this Chapter, we have shown that in the presence of both magnetic field B 
electric field E , the total force acting on a moving particle with charge 

rr

r and the 
q

r
r
r

+ ×  rv , where v r

r 
Bandrinvolves the cross product of v 

= e + B EF F  F  B 
is (
 )
 is the velocity of the particle. The direction of q=

r

FB , based on the right-hand rule. In Cartesian 

coordinates, the unit vectors are î , ĵ  and k̂  which satisfy the following properties: 

ˆ ˆ  ˆ ˆ ˆ ˆ ˆ ˆ ˆ× =  k k × =  i j k, j× =  i, i j 

ˆ ˆ  ˆ ˆ ˆ ˆ ˆ ˆ ˆj× = j i i  × =i −k, k × = − , k −j 

ˆ ˆ ˆ ˆ  ˆ ˆ× = × = ×  =  j j  k k  0i i  

r

y ĵ î ĵ +
Bz k̂ , the cross product may be obtained as k̂ andFor v = vx î 

r 

r B
=
Bx B
+
 +
 +
v vz y 

î ĵ k̂ 

v v = v B  − v B  î + v B  − v B  ĵ + v B  − v B  k̂ 
y z z z x x x y x 

r

(
 )
 (
 )
 (
 )
× =v B  vx y z y z y 

B B Bx y z 

r
rIf only the magnetic field is present, and v

circle with a radius r m / | | , and an angular speed ω = q B m  | / .
= v  q B | 

When dealing with a more complicated case, it is useful to work with individual force 
components. For example, 

ma = qE + ( − )F = q v B  v B  x x x y z z y 

 is perpendicular to B , then the trajectory is a 
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8.9  Solved Problems 

8.9.1 Rolling Rod 

A rod with a mass m and a radius R is mounted on two parallel rails of length a separated 
by a distance l , as shown in the Figure 8.9.1. The rod carries a current I and rolls without 

r 
slipping along the rails which are placed in a uniform magnetic field B directed into the 
page. If the rod is initially at rest, what is its speed as it leaves the rails? 

Figure 8.9.1 Rolling rod in uniform magnetic field 

Solution: 

Using the coordinate system shown on the right, the 
magnetic force acting on the rod is given by 

r r r 
=  × =  l ̂  × ˆ = I B  ˆFB I l B I ( ) (  i −B k) l j (8.9.1) 

The total work done by the magnetic force on the rod as it moves through the region is 

⋅d s =  F a  = ( l )W = ∫F 
r 

B 
r 

B I B a  (8.9.2) 

By the work-energy theorem, W must be equal to the change in kinetic energy: 

Δ =K 1 mv  2 + 1 Iω2 (8.9.3)
2 2 

where both translation and rolling are involved. Since the moment of inertia of the rod is 
given by I mR2 / 2  , and the condition of rolling with slipping implies ω = v R  , we= / 
have 

1 2 1 ⎛ mR2 ⎞ v 2 1 2 1 2 3 2⎛ ⎞IlBa = mv + ⎜ ⎟⎜ ⎟ = mv + mv = mv (8.9.4)
2 2 2 R 2 4 4⎝ ⎠⎝ ⎠  
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Thus, the speed of the rod as it leaves the rails is  

(8.9.5)4 
3 
I Ba v 

m 
= l

8.9.2  Suspended Conducting Rod 

A conducting rod having a mass density λ kg/m is suspended by two flexible wires in a 
r 

uniform magnetic field B which points out of the page, as shown in Figure 8.9.2. 

Figure 8.9.2 Suspended conducting rod in uniform magnetic field 

If the tension on the wires is zero, what are the magnitude and the direction of the current 
in the rod? 

Solution: 

In order that the tension in the wires be zero, the magnetic 

ˆ 

r r r 
force FB = I l ×B acting on the conductor must exactly 

r 
cancel the downward gravitational force Fg = −mgk . 

For BF 
r 

to point in the +z-direction, we must have 
r 
l = − ĵl , i.e., the current flows to the 

left, so that 

rr r 
I l×B = I (−l ̂ )  (  B î = −  l ( ĵ× î = +  I B ˆFB = j × ) I B  ) l k (8.9.6) 

The magnitude of the current can be obtain from 

IlB mg= (8.9.7) 
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2q Vv 
m 
Δ =

or 

I = mg = λg (8.9.8)
Bl B 

8.9.3 Charged Particles in Magnetic Field 

Particle A with charge q and mass mA  and particle B with charge 2q and mass mB , are 
accelerated from rest by a potential difference ΔV , and subsequently deflected by a 
uniform magnetic field into semicircular paths. The radii of the trajectories by particle A 
and B are R and 2R, respectively. The direction of the magnetic field is perpendicular to 
the velocity of the particle. What is their mass ratio? 

Solution: 

The kinetic energy gained by the charges is equal to  

1 mv2 q V  (8.9.9)= Δ
2 

which yields 

(8.9.10) 

The charges move in semicircles, since the magnetic force points radially inward and 
provides the source of the centripetal force: 

2mv = qvB (8.9.11)
r 

The radius of the circle can be readily obtained as: 

mv m 2q V = 1 2mΔ (8.9.12)Δ V r = = 
qB qB m B q 

( /  )1/ 2 which shows that r is proportional to m q  . The mass ratio can then be obtained from 

1/ 2 q 1/ 2 rA = (mA / qA )
1/ 2 ⇒ R = (mA /  )  

1/ 2 (8.9.13)
r (m / qB ) 2R (mB / 2  )  B B q 

which gives 

mA 1 =  (8.9.14)
mB 8 
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8.9.4 Bar Magnet in Non-Uniform Magnetic Field  

A bar magnet with its north pole up is placed along the symmetric axis below a horizontal 
conducting ring carrying current I, as shown in the Figure 8.9.3. At the location of the 
ring, the magnetic field makes an angle θ  with the vertical. What is the force on the ring? 

Figure 8.9.3 A bar magnet approaching a conducting ring 

Solution: 

The magnetic force acting on a small differential current-carrying element Id s r on the 
ring is given by dF 

r 
B = Id  s r ×B 

r 
, where B 

r 
is the magnetic field due to the bar magnet. 

Using cylindrical coordinates ( ,ˆ ˆ , ˆ) as shown in Figure 8.9.4, we haver φ z

r
dFB = −I ( ds φ̂)  (  × B sin  θ r̂ + B cos  θ ẑ) = (IBds)sin  θ ẑ − (IBds ) cos  θ r̂ (8.9.15) 

Due to the axial symmetry, the radial component of the force will exactly cancel, and we 
are left with the z-component. 

Figure 8.9.4 Magnetic force acting on the conducting ring 

The total force acting on the ring then becomes 

F 
r 

B = (IB sin θ )ẑ Ñ∫ ds = (2 π rIB sin θ ) ẑ (8.9.16) 

The force points in the +z direction and therefore is repulsive. 

8-24 



8.10 Conceptual Questions 

1. Can a charged particle move through a uniform magnetic field without experiencing 
any force? Explain. 

2. If no work can be done on a charged particle by the magnetic field, how can the motion 
of the particle be influenced by the presence of a field? 

3. Suppose a charged particle is moving under the influence of both electric and magnetic 
fields. How can the effect of the two fields on the motion of the particle be distinguished? 

4. What type of magnetic field can exert a force on a magnetic dipole? Is the force 
repulsive or attractive? 

5. If a compass needle is placed in a uniform magnetic field, is there a net magnetic force 
acting on the needle? Is there a net torque? 

8.11 Additional Problems 

8.11.1  Force Exerted by a Magnetic Field 

The electrons in the beam of television tube have an energy of 12 keV 
( 1 eV = 1.6 ×10 −19 J ). The tube is oriented so that the electrons move horizontally from 
south to north. At MIT, the Earth's magnetic field points roughly vertically down (i.e. 
neglect the component that is directed toward magnetic north) and has magnitude B ~ 
5 10−5 T.× 

(a) In what direction will the beam deflect? 

(b) What is the acceleration of a given electron associated with this deflection? [Ans. 
~10−15 m/s2.] 

(c) How far will the beam deflect in moving 0.20 m through the television tube? 

8.11.2  Magnetic Force on a Current Carrying Wire 

A square loop of wire, of length l = 0.1 m on each side, has a mass of 50 g and pivots 
about an axis AA' that corresponds to a horizontal side of the square, as shown in Figure 
8.11.1. A magnetic field of 500 G, directed vertically downward, uniformly fills the 
region in the vicinity of the loop. The loop carries a current I so that it is in equilibrium at 
θ = 20° . 
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Figure 8.11.1 Magnetic force on a current-carrying square loop. 

(a) Consider the force on each segment separately and find the direction of the current 
that flows in the loop to maintain the 20°  angle. 

(b) Calculate the torque about the axis due to these forces. 

(c) Find the current in the loop by requiring the sum of all torques (about the axis) to be 
zero. (Hint: Consider the effect of gravity on each of the 4 segments of the wire 
separately.) [Ans. I ~ 20 A.] 

(d) Determine the magnitude and direction of the force exerted on the axis by the pivots.  

(e) Repeat part (b) by now using the definition of a magnetic dipole to calculate the 
torque exerted on such a loop due to the presence of a magnetic field. 

8.11.3  Sliding Bar 

A conducting bar of length is placed on a frictionless inclined plane which is tilted at 
an angle θ  from the horizontal, as shown in Figure 8.11.2. 

Figure 8.11.2 Magnetic force on a conducting bar 

A uniform magnetic field is applied in the vertical direction. To prevent the bar from 
sliding down, a voltage source is connected to the ends of the bar with current flowing 
through. Determine the magnitude and the direction of the current such that the bar will 
remain stationary. 
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8.11.4 Particle Trajectory 

A particle of charge −q is moving with a velocity v r . It then enters midway between two 
plates where there exists a uniform magnetic field pointing into the page, as shown in 
Figure 8.11.3. 

Figure 8.11.3 Charged particle moving under the influence of a magnetic field 

(a) Is the trajectory of the particle deflected upward or downward? 

(b) Compute the distance between the left end of the plate and where the particle strikes. 

8.11.5 Particle Orbits in a Magnetic Field 

Suppose the entire x-y plane to the right of the origin O is filled with a uniform magnetic 
r

field B pointing out of the page, as shown in Figure 8.11.4. 

Figure 8.11.4 

Two charged particles travel along the negative x axis in the positive x direction, each 
with speed v, and enter the magnetic field at the origin O. The two particles have the 
same charge q, but have different masses, m1 and m2 . When in the magnetic field, their 
trajectories both curve in the same direction, but describe semi-circles with different radii. 
The radius of the semi-circle traced out by particle 2 is exactly twice as big as the radius 
of the semi-circle traced out by particle 1.   

(a) Is the charge q of these particles such that q > 0 , or is q < 0 ? 
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(b) Derive  (do not simply state) an expression for the radius R1 of the semi-circle traced 
out by particle 1, in terms of q, v, B, and m1 . 

(c) What is the ratio 2 / 1m m  ? 

r 
(d) Is it possible to apply an electric field E in the region x > 0 only which will cause 
both particles to continue to move in a straight line after they enter the region x > 0 ? If 
so, indicate the magnitude and direction of that electric field, in terms of the quantities 
given. If not, why not? 

8.11.6 Force and Torque on a Current Loop 

A current loop consists of a semicircle of radius R and two straight segments of length 
l with an angle θ between them. The loop is then placed in a uniform magnetic field 
pointing to the right, as shown in Figure 8.11.5. 

Figure 8.11.5 Current loop placed in a uniform magnetic field 

(a) Find the net force on the current loop. 

(b) Find the net torque on the current loop. 

8.11.7 Force on a Wire 

A straight wire of length 0.2 m carries a 7.0 A current. It is immersed in a uniform 
magnetic field of  0.1 T whose direction lies 20 degrees from the direction of the current.  

(a) What is the direction of the force on the wire? Make a sketch to show your answer.  

(b) What is the magnitude of the force? [Ans. ~0.05 N]  

(c) How could you maximize the force without changing the field or current? 
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8.11.8 Levitating Wire 

r 
A copper wire of diameter d carries a current density J at the Earth’s equator where the 
Earth’s magnetic field is horizontal, points north, and has magnitude B = 0.5×10 −4 T . 
The wire lies in a plane that is parallel to the surface of the Earth and is oriented in the 

3 3east-west direction. The density and resistivity of copper are ρm = 8.9 ×10 kg/m and 
ρ =1.7 ×10 −8 Ω⋅m , respectively.  

r 
(a) How large must J be, and which direction must it flow in order to levitate the wire? 
Use g = 9.8 m/s2 

(b) When the wire is floating how much power will be dissipated per cubic centimeter? 
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