
RL Circuits 
Challenge Problem Solutions 

Problem 1: 

RL Circuits 
Consider the circuit at left, consisting of a battery (emf 
ε), an inductor L, resistor R and switch S. 

For times t<0 the switch is open and there is no current 
in the circuit.  At t=0 the switch is closed. 

(a) Using Kirchhoff’s loop rules (really Faraday’s 
law now), write an equation relating the emf on the 
battery, the current in the circuit and the time 
derivative of the current in the circuit. 

We know from thinking about it above that the results should look very similar to RC 
circuits.  In other words: 

I = A(X – exp(-t/τ)) 

(b) 	 Plug this expression into the differential equation you obtained in (a) in order to 
confirm that it indeed is a solution and to determine what the time constant τ and 
the constants A and X are. What would be a better label for A? (HINT: You will 
also need to use the initial condition for current.  What is I(t=0)?) 

(c) 	 Now that you know the time dependence for the current I in the circuit you can 
also determine the voltage drop VR across resistor and the EMF generated by the 
inductor. Do so, and confirm that your expressions match the plots in Fig. 2a or 
2b. 

Problem 1 Solutions: 

(a) Walking in the direction of current, starting at the switch 
dIε − IR − L = 0
dt 

(b) 
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Both the constant and time dependent part must equal zero, giving us two equations.  The 
third (because there are three unknowns) we can get from initial conditions: 
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A better label for A would be If, the final current. 

(c) We find: 

( ) ( −t τ ) =
ε (1− e−t τ ) (Fig. 2a)  I t  = A X  − e 
R 

V t( ) = IR  = ε 1− e−t τ ) (Fig. 2a)  

( ) = −L dI 
= −L ε e−t τ = −εe−t τ (Fig. 2b) 
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Looking at the EMF from the inductor you see that it starts the same as the battery (but in 
the opposite direction) which explains why no current initially flows.  Then as time goes 
on it relaxes. 



Problem 2: 


‘Discharging’ an Inductor 


After a long time T the current will reach an equilibrium 
value and inductor will be “fully charged.”  At this point we 
turn off the battery (ε=0), allowing the inductor to 
‘discharge,’ as pictured at left.  Repeat each of the steps a-c 
in problem 1, noting that instead of exp(-t/τ), our 
expression for current will now contain exp(-(t-T)/τ). 

(a) Faraday’s law: 

(b) Confirm solution: 

(c) Determine VR across resistor and the EMF generated by the inductor. 

Problem 2 Solutions: 
(a) Walking in the direction of current, starting at the switch 

dI
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dt 
(b) 
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Both the constant and time dependent part must equal zero, giving us two equations.  The 
third (because there are three unknowns) we can get from initial conditions: 

−ARX = 0 ⇒ X = 0 
⎛ A ⎞ −t τ = 0 ⇒τ = 

L 
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⎝ τ ⎠ R 

( ) ( ) ε εI t  = T = A X  −1 = ⇒ A = −
R R 

A better label for A would be I0, the initial current. 

(c) Everything is exponentially decaying with time: 
−t τ ) = 

ε e−t τI t( ) = A X  ( − e (Fig. 2b) 
R


V t( ) = IR  = εe−t τ
 (Fig. 2b) R 

ε L ( )t = −L dI 
= L ε e−t τ = εe−t τ (Fig. 2b) 

dt Rτ 



Problem 3: 

A Real Inductor 

Consider a coil that does not behave as an ideal inductor, but rather as an ideal inductor in 
series with a resistor. For this reason you have no way to independently measure the 
voltage drop across the resistor or the EMF induced by the inductor, but instead must 
measure them together.  None-the-less, you want to get information about both.  In this 
problem you will figure out how. 

(a) Hook up the circuit of problem 1 (with the ideal inductor L of that problem now 
replaced by a coil that is a non-ideal inductor – an inductor L and resistor r in series).  
The battery will periodically turn on and off, displaying a voltage as shown here: 

V Ba
tte

ry
 (V

ol
ts

) 

1.0 

0.5 

0.0 
0.0 0.5 1.0 1.5 2.0 

Time (Periods) 

Sketch the current through the battery as well as what a voltmeter hooked across the 
coil would show versus time for the two periods shown above.  Assume that the 
period of the battery turning off and on is comparable to but longer than several time 
constants of the circuit. 

(b) How can you tell from your plot of the voltmeter across the coil that the coil is not 
an ideal inductor?  Indicate the relevant feature clearly on the plot.  Can you 
determine the resistance of the coil, r, from this feature? 

(c) In the lab you will find it easier to make measurements if you do NOT use an 
additional resistor R, but instead simply hook the battery directly to the coil.  (Why? 
Because the time constant is difficult to measure with extra resistance in the circuit).  
Plot the current through the battery and the reading on a voltmeter across the coil for 
this case.  We will only bother to measure the current.  Why? 

(d) For this case (only a battery & coil) how will you determine the resistance of the 
coil, r? How will you determine its inductance L? 

Problem 3 Solutions: 

(a) 
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(b) The voltage measured across the coil doesn’t go to zero because even when the 
inductor is “off” the coil resistance still has a voltage drop across it.  You can determine r 
from this voltage – r = V/I (in this case I made r ¼ of the total resistance, that is, 1/3 of 
R). 

(c) The current is the same as the current above (although the time constant will be longer 
because of the lower resistance).  The voltage measured across the coil will be the same 
as the voltage measured across the battery because they are the only two things in the 
circuit, so there is no need to measure it. 

(d) In this case we can determine the resistance from the final current (r = V/I) and the 
inductance from the time constant. 



Problem 4: 

The Coil 

Consider a coil made of thin copper wire (radius ~ 0.25 mm) and has about 600 turns of 
average diameter 25 mm over a length of 25 mm.  What approximately should the 
resistance and inductance of the coil be?  The resistivity of copper at room temperature is 
around 20 nΩ-m.  Note that your calculations can only be approximate because this is not 
at all an ideal solenoid (where length >> diameter). 

Problem 4 Solution: 
The resistance (NOTE: I screwed up and meant radius was 0.25 mm, not diameter) 

ρL ⋅ N (20 nΩ m) ⋅ (600)(25 mm )ρ π  dR = = 2 ≈ 2 4.8≈ Ω  
A π a (0.25 mm )

The inductance of a solenoid we calculated in class to be: 
2 2 

2 2 −7  -1  ⎛ 600 ⎞ ⎛  25 mm ⎞L = n  R l  ≈ (4 ×10  T m A ) π (25 mm )μ π π  ≈ 9 mH 0 ⎜  ⎟ ⎜  ⎟
⎝ 25 mm ⎠ ⎝  2 ⎠ 



Problem 5: 

The LR circuit shown in the figure contains a resistor R1  and an inductance L in series 
with a battery of emf ε0 . The switch S is initially closed. At t = 0, the switch S is opened, 
so that an additional very large resistance R2  (with R2 � R1 ) is now in series with the 
other elements.   

(a) If the switch has been closed for a long time before t = 0, what is the steady current 
I0  in the circuit? 

(b) While this current I0  is flowing, at time t = 0, the switch S is opened. Write the 
differential equation for I ( )t  that describes the behavior of the circuit at times t ≥ 0. 
Solve this equation (by integration) for I ( )t under the approximation that ε0 = 0 . 
(Assume that the battery emf is negligible compared to the total emf around the circuit 
for times just after the switch is opened.)  Express your answer in terms of the initial 
current I0 , and R1 , R2 , and L. 

(c) Using your results from (b), find the value of the total emf around the circuit (which 
from Faraday's law is / ) just after the switch is opened. Is your assumption in (b) −LdI dt 
that ε0 could be ignored for times just after the switch is opened OK? 

(d) What is the magnitude of the potential drop across the resistor R2  at times t  > 0, just 
after the switch is opened?  Express your answers in terms of  ε0 , R1 , and R2 . How does 
the potential drop across R2  just after t = 0 compare to the battery emf ε0 , if 
R2 = 100R1 ? 

Problem 5 Solutions: 

(a) There is no induced emf before t = 0. Also, no current is flowing on R2.Therefore, 

ε 0I 0 = 
R1 



(b) The differential equation is 

ε 0 − I (t)(R1 + R2 ) = L dI (t) 
dt 

Under the approximation that ε 0 = 0 , the equation is 

− I (t)(R1 + R2 ) = L dI (t) 
dt 

The solution with the initial condition I(0) = I0 is given by 

I (t) = I 0 exp(− 
(R1 + R2 ) 

t)
L 

(c) 

ε = − L dI (t) 
= I 0 (R1 + R2 )

dt t =0 

Since I 0 =
ε 0 ,
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Thus, the assumption that ε 0 could be ignored for times just after the switch is open is 
OK. 

(d) The potential drop across R2 is given by 
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If R2 = 100R1 , 

ΔV2 = 100 ε 0 

This is why you have to open a switch in a circuit with a lot of energy 
stored in the magnetic field very carefully, or you end up very dead!! 



 

Problem 6: 

Consider the circuit shown in the figure, consisting of a battery (emf ε ), a resistor with 
resistance R , a long solenoid of radius a , height H  that has N turns and a 
switch S . Coaxial with the solenoid at the center of the solenoid is a circular copper ring 
of wire of radius b with b a and resistance R1 . =  the switch S  is closed.  > At t 0

(a) What is the rate that the current is changing the instant the switch is 
closed at t 0 ? Express your answer in terms of R , the self­= , ε , and L

inductance of the solenoid, as needed. 


(b)What is the self-inductance L  of the solenoid? You may assume that the 
solenoid is very long and so can ignore edge effects. Express your 
answer in terms of μ0 , a , b , H , N , R1 , R , and ε  as needed. Answers 
without any work shown will receive no credit.  

(c)What is the induced current in the copper ring at the instant the switch is 
closed at t 0 ? Express your answer in terms of μ0 , a , b , H , N , R1 , R , and= 

ε  as needed.  

Problem 6 Solutions: 

(a) At t 0 , the current in the circuit is zero so the emf is related to the changing = 
current by 

ε = L dI (t = 0)  .
dt 

Thus 



dI ε(t = 0)  = 
dt L 

Alternatively, the loop equation is given by − − L = 0 . Thus at t 0 , theε IR dI 
=

dt 

current in the circuit is zero and so ε = L dI (t = 0)  . The current is the circuit is
dt 

tR L )given by I t( ) =
ε (1− e− / . 
R 

So 

tR L dI (t = 0)  =
ε R e− / (t 0)  ε 

= =  . 
dt R L L 

(b) The direction of the magnetic field upwards (see figure).   

Choose an Amperian loop shown in the figure below, then Ampere’s Law becomes 
Bl = μ0nlI  . Therefore the magnitude of the magnetic field in the solenoid is  

μ0NIB = μ0nI  =  .
H 

The self inductance through the solenoid is  

NΦ a2 μ 2π 2 
loop NBπ 0 N aL = = = . 

I I H 



(c) The induced current is noting that the relevant area where the magnetic field is 
non-zero is π a2 

Iind = 
1 dΦ

= 
1  dB  π a2 = 

1 μ0 N π a2 dI  (t = 0) 

R1 dt R1 dt R1 H dt


1 μ0 N π a2 ε = 
1 μ0 N π a2 H 

2 

ε 
2 =

ε 
. 

R H L R H μ N π a  NR  1 1 0 1 
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